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Abstract

We propose a simple well-balanced method named the slope selecting method which is efficient in both steady state cap-
turing and preserving for hyperbolic system with geometrical source terms having concentrations. Physical problems under
consideration include the shallow water equations with discontinuous topography, and the quasi-one-dimensional nozzle
flows with discontinuous cross-sectional area. This method is an extension from the interface type method developed in
[S. Jin, X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentra-
tions, J. Comput. Math. 22 (2004) 230–249]. The slope selecting method keeps two merits of the previous method. It can be
applied when the homogeneous system solver is available and has efficient steady state capturing property. Compared with
the previous method, the slope selecting method has two improvements. One is this method also has satisfactory steady
state preserving property. The other is this method can be applied to any conservative scheme for the homogeneous system.
Numerical examples provide strong evidence on the effectiveness of this slope selecting method for various unsteady,
steady and quasi-steady state solutions calculations as well as the flexibility of this method of being applicable to any
conservative scheme for the homogeneous system.
� 2006 Elsevier Inc. All rights reserved.

MSC: 65M06; 35L60; 76B15; 76M20

Keywords: Shallow water equations; Nozzle flow equations; Discontinuous topography; Well-balanced scheme; Surface gradient method;
Shock capturing
1. Introduction

Hyperbolic systems with geometric source terms arise in many physical applications, including the shallow
water equations with bottom topography and the quasi-one-dimensional nozzle flow equations with variable
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cross-sectional area. In this paper, we are concerned with the situation when the source terms in the system
have concentrations, corresponding to a d function in the source, which is the case when the bottom is discon-
tinuous for shallow water equations or cross-sectional area is discontinuous for nozzle flow equations. For
such system with singular source term, conventional source term approximation methods usually fail to
resolve two related numerical issues. The first is steady state capturing, namely given an unsteady state initial
condition, a numerical method should be able to produce the numerical steady state solution satisfying the
correct steady state conditions. The conventional numerical method may give poor approximations to the
steady state equations due to the first order numerical viscosity used at discontinuities [16]. It is shown in
[21,23] the conventional cell average method fails in steady state capturing for such problems. The second
is steady state preserving, namely given an exact steady state solution as initial condition, a numerical method
should be able to efficiently keep this initial condition as numerical steady state solution. This property is
important for a numerical method to be able to correctly calculate quasi-steady state solutions [30]. This issue
needs to be carefully studied even when the source terms for the hyperbolic system do not have concentrations.
For example, fractional step methods and the pointwise source discretization method are shown to be impro-
per in steady state preserving for shallow water equations when the bottom is continuously variable [19,30].
We will show in this paper that a method which is efficient in steady state preserving when the source terms for
the hyperbolic system do not have concentrations does not necessarily work well for hyperbolic system with
source terms having concentrations.

A well accepted strategy for dealing with hyperbolic system with source term is to design so-called well-
balanced scheme that balances the numerical flux with the source term such that the steady state solution is
captured or preserved numerically exactly or with at least a second order accuracy. Many well-balanced
schemes have been proposed by many authors in recent years, including well-balanced scheme based on
non-conservative product [16] and its extensions [5,10,13–15,17], LeVeque’s quasi-steady computing scheme
[30], kinetic schemes [2,4,31,38], relaxation schemes [8,32], central schemes [26], HLLE scheme [7] and schemes
based on SGM (surface gradient method) [39,40]. Nonlinear extension of Roe’s linear idea [34] was made in
[3,19,21,36]. Many of these methods require the modification of the numerical flux in order to achieve well-
balance property of the schemes.

We investigate in this paper a simple well-balanced scheme which has satisfactory roles in both steady
state capturing and steady state preserving for hyperbolic system with geometrical source terms having
concentrations. Our scheme can effectively calculate the unsteady, steady and quasi-steady state solutions
of considered equations. This scheme is an extension of the method in [23]. Based on the same principle of
the interface method by Jin [21] and the methods in [23,24], this scheme uses interface values rather than
cell averages in the source terms and can be applied when a black-box homogeneous equations solver is
available. The main advantages of this type of methods are that they do not require the modification of
the numerical fluxes for the nonlinear convection terms, and the added numerical effort is small compared
with solving the homogeneous hyperbolic system. The present method has two improvements on the
method in [23]. Firstly, the method in [23] is an efficient steady state capturing scheme while it does
not deal with the steady state preserving issue. In this paper, our method keeps similar steady state cap-
turing merit, and also has satisfactory steady state preserving role. Secondly, the method in [23] can only
apply to Godunov type schemes for the homogeneous equations providing interface values of conserved
variables, which are those values by substituting into the flux expression of the hyperbolic system yield
the numerical fluxes for the schemes. This is because a key step to obtain the well-balance of the method
in [23] is the use of interface values in the source term approximations. However, such Godunov type
schemes providing interface values are limited nearly to Godunov [12] and Roe [33] method, and exclude
many popularly used schemes such as central schemes [20,27], relaxation scheme [25] and HLLE scheme
[9,18] in which numerical fluxes are directly given without aid of defining interface values of conserved
variables. The method in the present paper gets rid of such restrictions and can apply to any conservative

scheme for the homogeneous part of the considered hyperbolic system in which only numerical fluxes need
to be provided.

We call the method proposed in this paper the slope selecting method. Our method hybridizes three impor-
tant ingredients. Take shallow water equations with discontinuous bottom topography as example. Firstly,
we start from the surface gradient method (SGM) [40]. SGM is a convenient method which achieves the
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steady state preserving role for a continuous variable bottom function by incorporating into the conven-
tional cell average method a simple data reconstruction procedure. It uses gradient of water surface level
rather than that of water height to reconstruct conserved variables for obtaining numerical fluxes. Secondly,
as SGM is no longer reliable for preserving (non-stationary) steady state solution for shallow water equa-
tions with discontinuous bottom, we propose a slope selecting strategy which modifies the slopes for water
surface level or water height in cells near a bottom discontinuity. This process facilitates the achieving of
steady state preserving role of our method, and also provides a suitable way to define the interface values
of water height using the cell average values to be used in the source term approximation. Thirdly, we need
to apply the same interface type source term approximation proposed in the method [23] in the cell contain-
ing a bottom discontinuity, which is indispensable for our method to be efficient in both steady state cap-
turing and preserving for discontinuous bottom problem. Since the interface values of conserved variables
needed by the interface type source term approximation are provided by the slope selecting strategy and
numerical fluxes, our method is thus applicable to any conservative scheme providing numerical fluxes for
the homogeneous shallow water equations. With the hybridization of these three ingredients, our method
is able to achieve satisfactory steady state preserving role for shallow water equations with general discon-
tinuous and variable bottom topography.

For nozzle flow equations, following the same design principle of SGM, we have designed similar data
reconstruction strategies which are efficient steady state preserving method when the cross-sectional area in
the problem is continuous variable. They are called the density gradient method (DGM) and the energy gra-

dient method (EGM) for isothermal and non-isothermal nozzle flow equations, respectively. The hybridization
in our slope selecting method for nozzle flow equations with discontinuous cross-sectional area is similar. We
combine with the DGM or EGM, the slope selecting strategy and the interface type source term approxima-
tion to get a method having satisfactory role in steady state preserving for the nozzle flow equations with dis-
continuous and variable cross-sectional area.

Furthermore, the steady state capturing role of the method in [23] is preserved in our present method with
the improvement that the present method is applicable to more general schemes for the homogeneous hyper-
bolic systems – any conservative scheme providing numerical fluxes. Similar to the method in [23], the slope
selecting method can also correctly calculate both unsteady and steady state solution for the hyperbolic
systems with concentration source terms. This slope selecting method can correctly deal with the sub- or
super-critical flow case and when adding a transonic fix in the source term approximation can solve well
the transonic flow over the concentration.

In Sections 2–4, we introduce our slope selecting method for shallow water equations, isothermal and non-
isothermal nozzle flow equations, respectively. We give proof for each problem that our method is capable of
preserving the steady state solution with any desired accuracy in the simple but important case when the bot-
tom topography or the cross-sectional area is a step function. The fact that our method keeps similar efficiency
in steady state capturing as in the method [23] for these problems are demonstrated numerically. Numerical
examples show that our method, being widely applicable to conservative schemes for the homogeneous hyper-
bolic system, gives satisfactory unsteady, steady solutions and also efficiently preserve steady state solutions
for these problems.

Similar to SGM, the well-balance of our slope selecting method is generally hold when using both uniform
and nonuniform meshes. For simplicity, in this paper we discuss about the uniform meshes. In the following
we will use xj+1/2 to denote the grid point, Dx = xj+1/2 � xj�1/2 the mesh size, wj+1/2 = w(xj+1/2) the interface
value of a general quantity w, and wj ¼ 1

Dx

R xjþ1=2

xj�1=2
wðxÞ dx the cell average of w over the cell [xj�1/2,xj+1/2].
2. The shallow water equations

Consider the one-dimensional shallow water equations with topography
ht þ ðhvÞx ¼ 0; ð2:1Þ

ðhvÞt þ hv2 þ 1

2
gh2

� �
x

¼ �ghBx; ð2:2Þ
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where h is the depth of the water, v is the mean velocity, g is the gravitational constant, and B(x) is the bottom
topography. It is known that the steady state solutions on continuous bottom part is either smooth solutions
satisfying
hv ¼ C1; ð2:3Þ
1

2
v2 þ ghþ gB ¼ C2 ð2:4Þ
or the stationary shock.
In [1] the authors studied the shallow water Riemann problem with a bottom step. Since the solution to

Riemann problem has self-similarity, the solution reaches steady state across the bottom step immediately
after initial time. The analytic solution constructed in [1] is guided by seeking classical solution to the homo-
geneous shallow water Riemann problem away from the bottom step, which can be connected by proper
steady state conditions across the bottom step. These steady state conditions can be interpreted as regarding
the bottom step as a steep continuous bottom topography and assuming a smooth flow over the bottom
step. Thus the flow at two sides of the bottom step satisfy the momentum and energy conservation, namely
the conditions (2.3), (2.4) are satisfied across the bottom step. Moreover, in a smooth steady state transition
across the bottom step, the states i.e. subcritical when jvjffiffiffiffi

gh
p < 1, transcritical when jvjffiffiffiffi

gh
p ¼ 1 or supercritical

when jvjffiffiffiffi
gh
p > 1 at two sides of the bottom step are limited. They can be both subcritical or be both super-

critical, but a direct transition between subcritical and supercritical states across the bottom step is not
allowed. This is because in a smooth steady state shallow water flow the transcritical point connecting sub-
critical and supercritical flow can only be attained at the maximum bottom point. In the same reason, the
subcritical or supercritical state can be connected with a transcritical state to compose the smooth steady
state flow across the bottom step with the condition that the transcritical state is reached at the higher bot-
tom step side.

With the aid of the above steady state conditions across the bottom discontinuity, we can give the definition
of the corresponding steady state solutions to shallow water equations (2.1), (2.2) with discontinuous bottom
as follows

Definition 2.1. Steady state solutions to shallow water equations with discontinuous bottom: for a given
initial condition to shallow water equations (2.1), (2.2) with discontinuous bottom, the solution will remain
unchanged, i.e. the initial condition is the steady state solution for shallow water equations with discontinuous
bottom, if the initial condition is steady state solution on continuous bottom part, and across the bottom
discontinuity the conditions (2.3), (2.4) hold, namely
hlvl ¼ hrvr; ð2:5Þ
1

2
v2

l þ ghl þ gBl ¼
1

2
v2

r þ ghr þ gBr; ð2:6Þ
where hl, vl, Bl and hr, vr, Br are the water height, velocity in the initial condition and the bottom function value
at two sides of the bottom discontinuity, and one of the following situations occurs
ðiÞ jvljffiffiffiffiffiffi
ghl

p < 1;
jvrjffiffiffiffiffiffiffi
ghr

p < 1; ð2:7Þ

ðiiÞ jvljffiffiffiffiffiffi
ghl

p > 1;
jvrjffiffiffiffiffiffiffi
ghr

p > 1; ð2:8Þ

ðiiiÞ
jvljffiffiffiffiffi

ghl

p ¼ 1 if Bl > Br;

jvrjffiffiffiffiffi
ghr

p ¼ 1 if Bl < Br:

8><>: ð2:9Þ
Notice when the momentum and energy are conserved across the bottom discontinuity, but the two sides
states are subcritical and supercritical, respectively, the solution is not in steady state, and will evolve to a
physically permissible steady state solution.
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The smooth transition across the bottom discontinuity described in Definition 2.1 are not all the possible
steady state conditions across the bottom discontinuity. In [6] the authors investigate the resonance phenom-
enon which is the situation that a stationary shock superposes with the bottom discontinuity. Thus it is pos-
sible that a subcritical state being connected with a supercritical state with energy not conserved to compose a
steady state flow across the bottom discontinuity. Such a steady state transition across the bottom disconti-
nuity is essentially non-smooth. Nevertheless, it is shown in [1] that the solutions constructed under the
smooth steady state conditions across the bottom step described in Definition 2.1 form rich solution patterns.
Therefore, such problems are commonly encountered in which the solutions evolve to the steady state solu-
tions belonging to Definition 2.1.

In this section, we are concerned with the steady state capturing and preserving for such steady state solu-
tions belonging to Definition 2.1. We design a well-balanced scheme for (2.1), (2.2) which is proved or
numerically demonstrated to be efficient in both steady state capturing and preserving. The investigation
of numerical scheme suitable for those steady state solutions related to the non-smooth steady state condi-
tions across the bottom discontinuity is of interest in the future study. We notice that the well-balanced
scheme built in [6] based on solution of shallow water Riemann problem with a bottom step is generally effi-
cient for computing solution with smooth or non-smooth transition across the bottom discontinuity. But
solving the shallow water Riemann problem with a bottom step is a much more complex task than solving
the homogeneous Riemann problem. The merits of the interface type methods [23,24] and the present
method, as mentioned before, are that they only use the conventional scheme for homogeneous shallow
water equations. By implementing the well-balanced source term approximation, these methods automati-
cally correctly compute the solutions for shallow water equations with discontinuous bottom topography
(for smooth transition across the bottom discontinuity) without involving the complication of recognizing
different solution structures corresponding to different initial conditions in the system with singular source
term. As demonstrated in Sections 2–4, the slope selecting method can be easily applied to different hyper-
bolic system with geometrical source terms having concentrations with the knowledge of the homogeneous
system conservative solver.
2.1. The cell average method

We first present the conventional cell average method for the shallow water equations,
othj þ
mjþ1

2
� mj�1

2

Dx
¼ 0; ð2:10Þ

otðhvÞj þ
ejþ1

2
� ej�1

2

Dx
¼ �ghj

Bjþ1
2
� Bj�1

2

Dx
; ð2:11Þ
where Bj�1
2
¼ Bðxj�1

2
Þ and mj�1

2
; mjþ1

2
; ej�1

2
; ejþ1

2
denote, respectively, numerical fluxes for water height and

momentum at interfaces j� 1
2
; jþ 1

2
obtained by solving the homogeneous part of Eqs. (2.1), (2.2).

As is well known, when the bottom function B(x) is continuous, the cell average method is suitable for
steady state capturing but not for steady state preserving. For the purpose of steady state preserving in the
context of a continuous bottom function, the SGM [40] is a convenient choice. When B(x) contains a discon-
tinuity, the cell average method even loses the function of steady state capturing due to the first order numer-
ical viscosity added at discontinuities. This matches with the fact that the shallow water equations in the form
(2.1), (2.2), which are referred as mass-momentum formulation in [1], no longer hold valid when the bottom
slope becomes infinite.
2.2. An interface type method

We next present our method in [23] using interface values. This method is a hybrid scheme that uses the cell

average method everywhere except at cells that contain a discontinuity of B(x). In this method we always locate
the discontinuity of B(x) in a cell center. In the following we assume that a discontinuity of B(x) is contained in
the center of a cell ½xj�1

2
; xjþ1

2
�. We use Bj�1

2
to denote the interface values of B at xj�1

2
.
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At the interfaces of the cell ½xj�1
2
; xjþ1

2
�, we use a Godunov type solver providing the interface values of water

height and velocity which give the numerical fluxes by substituting into the flux expression to solve the homo-
geneous shallow water equations. Denote the interface values of h, v at xj�1

2
by such Godunov type solver to be

hj�1
2
; hjþ1

2
, vj�1

2
; vjþ1

2
and denote the numerical fluxes for water height and momentum at interfaces xj�1

2
by such

Godunov type solver to be mj�1
2
; mjþ1

2
, ej�1

2
; ejþ1

2
, respectively. Then it holds that
mj�1
2
¼ hj�1

2
vj�1

2
; mjþ1

2
¼ hjþ1

2
vjþ1

2
;

ej�1
2
¼ hj�1

2
v2

j�1
2
þ 1

2
gh2

j�1
2
; ejþ1

2
¼ hjþ1

2
v2

jþ1
2
þ 1

2
gh2

jþ1
2
.

Our scheme in [23] in this cell takes the form
othj þ
hjþ1

2
vjþ1

2

� �
� hj�1

2
vj�1

2

� �
Dx

¼ 0; ð2:12Þ

otðhvÞj þ
hjþ1

2
v2

jþ1
2
þ 1

2
gh2

jþ1
2

� �
� hj�1

2
v2

j�1
2
þ 1

2
gh2

j�1
2

� �
Dx

¼ �g
1

Dx

Z x
jþ1

2

x
j�1

2

ĥ dx

0@ 1ABjþ1
2
� Bj�1

2

Dx
; ð2:13Þ
where a general hat-function q̂ denotes a smooth function in the cell ½xj�1
2
; xjþ1

2
� with endpoint values q(xi) at

xi ði ¼ j� 1
2
; jþ 1

2
Þ.

It remains to explain how to define the function bh in the cell ½xj�1
2
; xjþ1

2
�. This function is appropriately cho-

sen so that the well-balance of the scheme is achieved. Define function H(x) in the cell ½xj�1
2
; xjþ1

2
� to be the linear

interpolant through interpolating points ðxi; hiviÞ; i ¼ j� 1
2
; jþ 1

2
, G(x) in ½xj�1

2
; xjþ1

2
� to be the linear interpolant

through ðxi;
1
2
v2

i þ ghi þ gBiÞ; i ¼ j� 1
2
; jþ 1

2
, bBðxÞ in ½xj�1

2
; xjþ1

2
� to be the linear interpolant through

ðxi;BiÞ; i ¼ j� 1
2
; jþ 1

2
. Namely,
HðxiÞ ¼ hivi; GðxiÞ ¼
1

2
v2

i þ ghi þ gBi; bBðxiÞ ¼ Bi; i ¼ j� 1

2
. ð2:14Þ
We then determine ĥ; v̂ from the identities
H ¼ ĥv̂; ð2:15Þ

G ¼ 1

2
v̂2 þ gĥþ gbB; ð2:16Þ
or ĥ can be determined by the relation
1

2

H 2

ĥ2
þ gĥþ gbB ¼ G. ð2:17Þ
This equation generally has two positive roots, corresponding to subcritical and supercritical states,
respectively.

The following theorem shows that above hybrid scheme is well-balanced. The proof is given in [23].

Theorem 2.1. Our hybrid scheme (2.12), (2.13) can preserve the steady state conditions (2.3), (2.4) exactly at cell

interfaces at two sides of bottom discontinuity in numerical steady state solution:
hj�1
2
vj�1

2
¼ hjþ1

2
vjþ1

2
; ð2:18Þ

1

2
v2

j�1
2
þ ghj�1

2
þ gBj�1

2
¼ 1

2
v2

jþ1
2
þ ghjþ1

2
þ gBjþ1

2
. ð2:19Þ
The cell average of ĥ in the source term approximation (2.13) was approximated by composite quadrature
rules (e.g. the composite Simpson’s rule), with the values of ĥ at the quadrature points obtained by solving the
algebraic equation (2.17) using Newton’s iteration. The values of ĥ are chosen according to sub- or super-
critical states of the solution. In the transcritical solution case, a transcritical fix is used to help determining
the values of ĥ. The details are given in [23].
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2.3. The slope selecting method

We now describe our slope selecting method for shallow water equations (2.1) and (2.2).
In order to maintain steady state preserving property, our method starts from SGM [40]. In the similar way

to the interface type method described in the above subsection, our slope selecting method is a hybrid scheme
that uses SGM everywhere except modifying the slope definitions and source term approximation near or in
the cell containing the bottom discontinuity. In our method we always locate the discontinuity of B(x) in a
cell center. Here we briefly describe the procedure of SGM.

(1) In the step of defining the slopes of conserved variables – water height and momentum in each cell.
Instead of defining the slope of water height as usually adopted in solving the homogeneous shallow
water equations, define the slope(denoted by Sk) for water surface level g = h + B
Sk ¼ Gðgk�1; gk; gkþ1Þ;
where G is a standard slope limiter [29] such as minmod limiter or van Leer limiter. The slope of momen-
tum is still defined since momentum is a constant in the steady state solution.

(2) The values of water height on the left and right of the cell interface xkþ1
2

are given by
hL
kþ1

2
¼ gk þ

1

2
DxSk

� �
� Bkþ1

2
; hR

kþ1
2
¼ gkþ1 �

1

2
DxSkþ1

� �
� Bkþ1

2
.

The left and right values of momentum are still obtained by the momentum cell average values and
slopes. These left and right values of conserved variables at interface xkþ1

2
are used by a homogeneous

shallow water equations solver to get the numerical fluxes for water height and momentum mkþ1
2
; ekþ1

2
.

(3) Once the numerical fluxes for conserved variables are obtained, one can use the cell average formula
(2.10), (2.11) as the numerical scheme.

It is proved in [40] that SGM satisfies the Z-property defined as follows

Definition 2.2. Z-property: (i) a numerical scheme provides the exact values of a variable in the flow domain
to the stationary case that g being a constant, v ” 0; (ii) the scheme exactly preserves this stationary flow when
a centered discretization is used for source terms.

While SGM is efficient in preserving steady state solutions for shallow water equations with continuous
bottom, in the following we will show that SGM fails to preserve non-stationary steady state solutions for
shallow water equations with discontinuous bottom. Assume that a discontinuity of B(x) is contained in
the center of a cell ½xj�1

2
; xjþ1

2
�, and B(x) is continuous in the neighborhood on each side of xj. Consider the sit-

uation that a non-stationary steady state solution, i.e. the steady state solution in which water velocity v is
non-zero, is reached, and there is no stationary shock existing in the neighborhood of xj. Denote water height
in the steady state solution to be hs(x), and water surface level to be gs(x) = hs(x) + B(x). In a non-stationary
steady state, hs(x) and gs(x) both are discontinuous across the bottom discontinuity at xj in order to satisfy the
steady state conditions (2.3) and (2.4). Since no stationary shock exists in the neighborhood, hs(x) and gs(x) are
continuous on each side of xj locally. Remember the notations specified at the end of Section 1. Since gs(x) is
discontinuous across xj, one has that gs

jþ1
2
� gs

j�1
2

is a O(1) quantity with regard to decreasing Dx. Due to the

continuity of gs(x) on each side of xj, it holds that
gs
jþ1 ¼ gs

jþ1
2
þ oð1Þ; gs

j�1 ¼ gs
j�1

2
þ oð1Þ; gs

j ¼
gs

jþ1
2
þ gs

j�1
2

2
þ oð1Þ ð2:20Þ
with regard to decreasing Dx. In SGM, the slope of water surface level in the cell ½xj�1
2
; xjþ1

2
� is defined by

applying a standard slope limiter Gðgs
j�1; g

s
j; g

s
jþ1Þ. Then the predicted water surface level value on the left of

interface xjþ1
2

is given by
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gs;L

jþ1
2

¼ gs
j þ

1

2
DxGðgs

j�1; g
s
j; g

s
jþ1Þ. ð2:21Þ
Denote bGðgs
j�1; g

s
j; g

s
jþ1Þ ¼ DxGðgs

j�1; g
s
j; g

s
jþ1Þ, then bGðgs

j�1; g
s
j; g

s
jþ1Þ is of the form
bGðgs
j�1; g

s
j; g

s
jþ1Þ ¼ ðgs

jþ1 � gs
jÞ/

gs
j � gs

j�1

gs
jþ1 � gs

j

 !
; ð2:22Þ
where function / is continuous and /(1) = 1.
Together with (2.20), (2.21) and (2.22) gives
gs;L

jþ1
2

¼
gs

jþ1
2
þ gs

j�1
2

2
þ oð1Þ þ 1

2

gs
jþ1

2
� gs

j�1
2

2
þ oð1Þ

 !
/ð1þ oð1ÞÞ ¼

3gs
jþ1

2
þ gs

j�1
2

4
þ oð1Þ.
The error between this predicted water surface level value by SGM on the left of xjþ1
2

and the exact value is
gs;L

jþ1
2

� gs
jþ1

2
¼

gs
j�1

2
� gs

jþ1
2

4
þ oð1Þ;
which is a O(1) quantity with regard to decreasing Dx since gs
j�1

2
� gs

jþ1
2

is.

Thus SGM fails to correctly predict one side water surface level value on the interface near the bottom dis-
continuity for non-stationary steady state solution, in comparison with that it exactly predicts such value for
stationary steady state solutions cases. In fact, the principle allows SGM to be able to exactly predict water
height value at interfaces for stationary steady state solutions cases is that water surface level is constant in
those solutions. Thus it is not surprise that SGM fails in this role for non-stationary steady state solutions
with discontinuous bottom function since here water surface level is discontinuous, and fundamentally differ-
ent from a constant. Since SGM gives wrong one side water surface level value on the interface, it will also give
wrong one side water height value on this interface by subtracting the correct bottom function value. Conse-
quently, the resulting numerical flux calculated on this interface by SGM is also wrong. Thus it is impossible
for SGM to correctly preserve this non-stationary steady state solution with a discontinuous bottom function.
We also notice that even if the numerical fluxes at interfaces are correctly provided, with a cell average source
term discretization, SGM still cannot correctly preserve such non-stationary steady state solution. This reveals
the necessity of incorporating the interface type source term approximation [23] in our method.

Above discussed situation is illustrated in Fig. 1. In the figure the water surface level gs is discontinuous at xj

as we discussed above. From the figure one can clearly see how SGM predicts wrong water surface level value
Fig. 1. Illustration of failure of SGM for predicting water surface level value at interface near bottom discontinuity.
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on left side of interface xjþ1
2
. The needed slope for water surface level in the cell ½xj�1

2
; xjþ1

2
� should be sharper

than that given by SGM in order to give correct water surface level value at the interface because this is the
case water surface level has a standing discontinuity at xj.

This gives light to our slope selecting strategy which aims at giving one side values of conserved variables on
the interfaces near a bottom discontinuity from the cell average values with a o(1) error with regard to decreas-
ing Dx. We achieve the aim by directly considering how to define the slope for water height in the cell
½xj�1

2
; xjþ1

2
�. We seek a slope formula D(hj�1,hj,hj+1) in the cell, such that by defining
H Lðhj�1; hj; hjþ1Þ ¼ hj �
1

2
DxDðhj�1; hj; hjþ1Þ; ð2:23Þ

H Rðhj�1; hj; hjþ1Þ ¼ hj þ
1

2
DxDðhj�1; hj; hjþ1Þ; ð2:24Þ
it holds that
H Lðhs
j�1; h

s
j; h

s
jþ1Þ ¼ hs

j�1
2
þ oð1Þ; HRðhs

j�1; h
s
j; h

s
jþ1Þ ¼ hs

jþ1
2
þ oð1Þ; ð2:25Þ
where hs is the steady state water height function in the above discussion for failure of SGM.
By substituting similar expression as (2.20) into above conditions (2.25) and assuming continuity of HL and

HR, one gets
H L hs
j�1

2
;
hs

j�1
2
þ hs

jþ1
2

2
; hs

jþ1
2

 !
¼ hs

j�1
2
þ oð1Þ; ð2:26Þ

H R hs
j�1

2
;
hs

j�1
2
þ hs

jþ1
2

2
; hs

jþ1
2

 !
¼ hs

jþ1
2
þ oð1Þ. ð2:27Þ
Since there are no constraints on hs
j�1

2
; hs

jþ1
2

except they are non-negative, conditions (2.27), (2.26) require
H L a;
aþ b

2
; b

� �
¼ a; H R a;

aþ b
2

; b
� �

¼ b 8a; b > 0. ð2:28Þ
Since water height is a non-negative quantity, the obtained one side water height value on the interface should
be ensured non-negative. So we impose the following conditions on HL and HR
H Lða; b; cÞ > 0; HRða; b; cÞ > 0 8a; b; c > 0. ð2:29Þ
Thus we are seeking a slope expression D(hj�1,hj,hj+1) such that the functions HL, HR defined by (2.23), (2.24)
at least satisfy the conditions (2.28) and (2.29). There should be many available slope expressions which meet
such requirement. For example, it is easily seen from the discussion of the failure of SGM that setting
D(hj�1,hj,hj+1) = 2G(hj�1,hj,hj+1), where G(hj�1,hj,hj+1) is a standard slope limiter, may serve the purpose.
Here we propose a different formula. We assume the functions HL,HR take the form
H Lða; b; cÞ ¼ aða; cÞb; H Rða; b; cÞ ¼ bða; cÞb.
Then conditions (2.28) require
aða; cÞ ¼ 2a
aþ c

; bða; cÞ ¼ 2c
aþ c

.

Thus the functions HL,HR we have found by this way are
H L;�ða; b; cÞ ¼ 2ab
aþ c

; HR;�ða; b; cÞ ¼ 2cb
aþ c

. ð2:30Þ
The corresponding slope expression is
D�ðhj�1; hj; hjþ1Þ ¼
2hj

Dx
hjþ1 � hj�1

hjþ1 þ hj�1

. ð2:31Þ
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This is the water height slope formula we propose in the cell ½xj�1
2
; xjþ1

2
� from which the predicted one side water

height values H L;�ðhs
j�1; h

s
j; h

s
jþ1Þ and H R;�ðhs

j�1; h
s
j; h

s
jþ1Þ on the interfaces xj�1

2
satisfy the requirement (2.25) for a

non-stationary steady state solution with a discontinuous bottom function. Moreover, it is easily seen that
these predicted one side water height values are of O(Dx) error when hs is Lipschitz continuous at two sides
of xj, and are exact when hs is a step function, which is the case when bottom B is a step function. Now that the
water height slope has been determined by this formula, there is no need to give slope for water surface level in
this cell since the purpose of defining surface gradient in SGM is to provide a reasonable way for giving water
height slope.

Besides providing the water height slope in the cell ½xj�1
2
; xjþ1

2
� containing a bottom discontinuity, our slope

selecting strategy also involves modifying the slope for water surface level in the cells adjacent to this cell. Take
the cell ½xjþ1

2
; xjþ3

2
� for example. Denote g(x) to be the water surface level in a solution after initial time. The

slope of water surface level provided by SGM in this cell is given by a standard slope limiter G(gj,gj+1,gj+2)
applying on the cell average values. However, since the bottom function has a discontinuity at xj, it should be
that g(x) generally is discontinuous across xj even when steady state is not reached in the solution. Denote
gþj ¼ gðxþj Þ. One can see a reasonable way to define the slope of water surface level in the cell ½xjþ1

2
; xjþ3

2
� is

Gðgþj ; gjþ1; gjþ2Þ. The slope specified by SGM turns to be replacing gþj in the expression by gj. We assume it
is more suitable in principle to define the slope of water surface level in this cell by replacing gþj more accu-
rately in the expression Gðgþj ; gjþ1; gjþ2Þ. By observing that gj has a O(1) error from gþj , we propose to replace
gþj by a quantity more close to it. Define
g�jþ1
2
¼ H R;�ðhj�1; hj; hjþ1Þ þ Bjþ1

2
; ð2:32Þ
where HR,* is given in (2.30).
Although the conditions (2.25) are obtained for discussing steady state solution, the solution is just assumed

discontinuous across the bottom discontinuity and continuous on the two sides in the discussion. Thus the
same conditions can be derived for general (unsteady state) solution with the same property. Therefore,
one has
g�jþ1
2
¼ gjþ1

2
þ oð1Þ ¼ gþj þ oð1Þ
with regard to decreasing Dx.
Thus we propose to set water surface level slope in this cell ½xjþ1

2
; xjþ3

2
� to be Gðg�

jþ1
2
; gjþ1; gjþ2Þ with g�

jþ1
2

given

by (2.32). We use the minmod slope limiter in this slope selecting strategy. Then the proposed slope for water
surface level in this cell becomes
signfgjþ2 � gjþ1g þ signfgjþ1 � g�
jþ1

2
g

2Dx
minfjgjþ2 � gjþ1j; jgjþ1 � g�jþ1

2
jg.
The water surface level slope for the cell ½xj�3
2
; xj�1

2
� is similarly defined.

After above discussion, we now summarize our slope selecting strategy near the bottom discontinuity. For a
cell ½xj�1

2
; xjþ1

2
� containing a bottom discontinuity in the center, our slope selecting strategy involves setting

slopes for this cell and its two adjacent cells. Define
h�j�1
2
¼ 2hjhj�1

hjþ1 þ hj�1

; h�jþ1
2
¼ 2hjhjþ1

hjþ1 þ hj�1

; ð2:33Þ

g�j�1
2
¼ h�j�1

2
þ Bj�1

2
. ð2:34Þ
In the cell ½xj�1
2
; xjþ1

2
� we directly define the water height slope to be
h�jþ1
2
� h�j�1

2

Dx
.
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In the two adjacent cells we set the water surface level slopes to be
Sj�1 ¼
signfgj�1 � gj�2g þ signfg�

j�1
2
� gj�1g

2Dx
minfjgj�1 � gj�2j; jg�j�1

2
� gj�1jg; ð2:35Þ

Sjþ1 ¼
signfgjþ2 � gjþ1g þ signfgjþ1 � g�

jþ1
2
g

2Dx
minfjgjþ2 � gjþ1j; jgjþ1 � g�jþ1

2
jg. ð2:36Þ
The slopes for momentum in these cells are not changed. They are kept the same as in SGM as well as in solv-
ing homogeneous shallow water equations.

After implementation of the slope selecting strategy, another modification from SGM in our method is to
incorporate the interface type source term approximation [23] in the cell ½xj�1

2
; xjþ1

2
� containing a bottom

discontinuity in the center. Consider the situation that our method uses a conservative scheme for the homo-
geneous shallow water equations with only numerical fluxes provided. We need to use the slope selecting strat-
egy to provide the interface values of conserved variables required by the interface type source term
approximation which the conservative scheme may not supply.

Before treating with source term approximation, we first calculate the numerical fluxes for this cell. The
values of water height on the left and right of the cell interfaces xj�1

2
are
hL
j�1

2
¼ gj�1 þ

1

2
DxSj�1

� �
� Bj�1

2
; hR

j�1
2
¼ h�j�1

2
; ð2:37Þ

hL
jþ1

2
¼ h�jþ1

2
; hR

jþ1
2
¼ gjþ1 �

1

2
DxSjþ1

� �
� Bjþ1

2
; ð2:38Þ
with h�j�1
2

defined by (2.33) and Sj±1 set by (2.35), (2.36) in the slope selecting strategy. The left and right values
of momentum are obtained standardly as in SGM. These left and right values of conserved variables at inter-
faces xj�1

2
are used by the homogeneous equations conservative scheme to get the numerical fluxes for water

height and momentum mj�1
2
; ej�1

2
.

Now we need to define the interface values of conserved variables in order to apply the interface type source
term approximation. Instead of seeking the interface values of water height from the homogeneous equations
scheme, we specify the quantities defined by (2.33) in the slope selecting strategy as the water height interface
values at xj�1

2
. The interface values of velocity are then defined as
v�j�1
2
¼

mj�1
2

h�j�1
2

; v�jþ1
2
¼

mjþ1
2

h�jþ1
2

; ð2:39Þ
where mj�1
2

are numerical fluxes for water height we already obtained above.

We notice that these defined interface values of conserved variables are just for the purpose of using in the
source term approximation. While strictly obtain the numerical fluxes from the homogeneous equations con-
servative scheme, we use these defined interface values of conserved variables in the source term approximation
instead of those interface values matching with the numerical fluxes, i.e. those interface values of conserved
variables which give the numerical fluxes by substituting into the flux expression, which was used in the previous
interface type methods [23,24]. Numerical experiments strongly support that this measure makes our slope
selecting method keep similar steady state capturing efficiency as in our interface type methods [23,24] and
in the same time get rid of the restriction on the homogeneous equations solver of providing interface values
of conserved variables.

Once the interface values of conserved variables are defined at j� 1
2
, the following procedure is then similar

to the interface type method described in Section 2.2. We define function H(x) in the cell ½xj�1
2
; xjþ1

2
� to be the

linear interpolant through interpolating points ðxi; h
�
i v�i Þ; i ¼ j� 1

2
; jþ 1

2
, G(x) in ½xj�1

2
; xjþ1

2
� to be the linear

interpolant through ðxi;
1
2
ðv�i Þ

2 þ gh�i þ gBiÞ; i ¼ j� 1
2
; jþ 1

2
, and bBðxÞ in ½xj�1

2
; xjþ1

2
� to be the linear interpolant

through ðxi;BiÞ; i ¼ j� 1
2
; jþ 1

2
. Namely,
HðxiÞ ¼ h�i v�i ; GðxiÞ ¼
1

2
ðv�i Þ

2 þ gh�i þ gBi; bBðxiÞ ¼ Bi; i ¼ j� 1

2
. ð2:40Þ
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We then define smooth functions ĥ; v̂ in cell ½xj�1
2
; xjþ1

2
� satisfying
ĥðxiÞ ¼ h�i ; v̂ðxiÞ ¼ v�i ; i ¼ j� 1

2
; jþ 1

2
ð2:41Þ
and the identities
ĥv̂ ¼ H ; ð2:42Þ
1

2
v̂2 þ gĥþ gbB ¼ G; ð2:43Þ
or ĥ can be determined by the relation
1

2

H 2

ĥ2
þ gĥþ gbB ¼ G. ð2:44Þ
Then our slope selecting scheme in the cell ½xj�1
2
; xjþ1

2
� takes the form
othj þ
mjþ1

2
� mj�1

2

Dx
¼ 0; ð2:45Þ

otðhvÞj þ
ejþ1

2
� ej�1

2

Dx
¼ �g

1

Dx

Z x
jþ1

2

x
j�1

2

ĥ dx

0@ 1ABjþ1
2
� Bj�1

2

Dx
. ð2:46Þ
The numerical strategy for calculating the cell average of ĥ in the source term approximation and the choice of
ĥ value from the algebraic equation (2.44), including the use of a transcritical fix to facilitate the choice of ĥ in
dealing with transcritical problems are the same to our method described in Section 2.2. One can refer the
details in the paper [23].

We use the scheme of SGM in all the other cells do not containing a bottom discontinuity with the mention
that the slope of water surface level in the cell adjacent to a bottom discontinuity is modified by our slope
selecting strategy.

Because our method uses SGM in the cells where bottom is smooth, it can be similarly proved as in [40] that
our slope selecting method satisfies the Z-property given in Definition 2.2. The Z-property is known to be an
important property with which a scheme can efficiently preserve (stationary or non-stationary) steady state
solution for shallow water equations with smooth bottom. But as have been shown, for shallow water equa-
tions with discontinuous bottom, a scheme with only Z-property, for example SGM, may be unreliable in
(non-stationary) steady state preserving. Accordingly, we propose the following S-property which is useful
for steady state preserving for shallow water equations with discontinuous bottom.

Definition 2.3. S-property: a numerical scheme exactly preserves the (stationary or non-stationary) steady
state flow belonging to Definition 2.1 in which no stationary shock exists for the shallow water equations with
a step function bottom.

We now prove that this S-property is formally satisfied by our slope selecting method.

Theorem 2.2. When the bottom function is a step function, if the interface type source term approximation in the

slope selecting method can be exactly computed, then the slope selecting scheme can preserve exactly any steady
state solution belonging to Definition 2.1 in which the steady state conditions (2.3), (2.4) are hold anywhere

including across the bottom discontinuity.

Proof. Assume the bottom is a step function with left side value Bl and right side value Br. We only need to
prove our slope selecting scheme preserve the steady state solution exactly in the cell ½xj�1

2
; xjþ1

2
� which contains

the bottom discontinuity in the center. Consider a steady state solution in which the water height and velocity
are step functions with left side values hl,vl and right side values hr,vr, respectively, and it holds that
hlvl ¼ hrvr; ð2:47Þ
1

2
v2

l þ ghl þ gBl ¼
1

2
v2

r þ ghr þ gBr. ð2:48Þ
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Denote M = hlvl = hrvr, then the cell average values of water height, water surface level and momentum in cells
j � 1, j, j + 1 are respectively
hj�1 ¼ hl; hj ¼
hl þ hr

2
; hjþ1 ¼ hr;

gj�1 ¼ hl þ Bl; gj ¼
hl þ Bl þ hr þ Br

2
; gjþ1 ¼ hr þ Br;

mi ¼ M ; i ¼ j� 1; j; jþ 1.
Because hj ¼ hj�1þhjþ1

2
, the definition of values of water height at interfaces j� 1

2
; jþ 1

2
(2.33) gives
h�j�1
2
¼ hl; h�jþ1

2
¼ hr. ð2:49Þ
The definition of slopes for water surface level in cells j � 1, j + 1 (2.35), (2.36) gives
Sj�1 ¼ 0; Sjþ1 ¼ 0.
The values of water height on the left and right of the cell interfaces xj�1
2

are given by (2.37), (2.38) as
hL
j�1

2
¼ gj�1 þ

1

2
DxSj�1

� �
� Bj�1

2
¼ hl;

hR
j�1

2
¼ hl;

hL
jþ1

2
¼ hr;

hR
jþ1

2
¼ gjþ1 �

1

2
DxSjþ1

� �
� Bjþ1

2
¼ hr;
where Bj�1
2
¼ Bl; Bjþ1

2
¼ Br.

On the other hand, because the momentum are constant in all cells, the values of momentum on the left
and right of any cell interface are given by M. So in solving the numerical fluxes by homogeneous equ-
ations conservative solver, the left and right side values at interface jþ 1

2 are the same which are (hr,M). No
matter what solver one uses, the numerical fluxes at interface jþ 1

2 are definitely given by mjþ1
2
¼ M ;

ejþ1
2
¼ hrv2

r þ 1
2gh2

r . In the same way, the numerical fluxes at interface j� 1
2 are given by mj�1

2
¼ M ; ej�1

2
¼

hlv2
l þ 1

2gh2
l .

Our slope selecting scheme in the cell [xj�1/2,xj+1/2] (2.45), (2.46) thus can be rewritten as
othj þ
M �M

Dx
¼ 0; ð2:50Þ

otðhvÞj þ
hrv2

r þ 1
2
gh2

r

� �
� hlv2

l þ 1
2
gh2

l

� �
Dx

¼ � g
Dx

Z x
jþ1

2

x
j�1

2

ĥbBx dx. ð2:51Þ
with the aid of bBðxÞ being linear function on [xj�1/2,xj+1/2] with end point values Bj�1
2
.

From (2.50) one knows the flux difference for water height is zero in the cell [xj�1/2,xj+1/2]. In the following
we prove that the flux difference for momentum is also zero. Recall the fact (2.49) and from definition (2.39)
one has
v�j�1
2
¼ M

hl

¼ vl; v�jþ1
2
¼ M

hr

¼ vr. ð2:52Þ
For steady state solutions satisfying one of conditions 2.7, 2.8 2.9 described in Definition 2.1, the transcritical
fix in our source term approximation does not apply. So the endpoint values for functions ĥ; v̂ are given by
(2.41), which are given by (2.49) and (2.52). Recalling the identities (2.42), (2.43), the flux difference for
momentum in scheme (2.51) can be calculated as
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hrv2
r þ 1

2
gh2

r

� �
� hlv2

l þ 1
2
gh2

l

� �
Dx

þ g
Dx

Z x
jþ1

2

x
j�1

2

ĥbBx dx ¼ 1

Dx

Z x
jþ1

2

x
j�1

2

ðĥv̂2Þx þ
1

2
gĥ2

� �
x

þ gĥbBx

	 

dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½ðĥv̂Þxv̂þ ðĥv̂Þv̂x þ gĥĥx þ gĥbBx� dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½H xv̂þ ĥðv̂v̂x þ gĥx þ gbBxÞ� dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½H xv̂þ ĥGx� dx. ð2:53Þ
Finally, recall the definitions of H,G (2.40) and the facts (2.47), (2.48), one knows H,G indeed are constants in
the cell [xj�1/2,xj+1/2]. So the function in the integration (2.53) is identically zero and the flux difference for
momentum in scheme (2.51) is zero. Thus this steady state solution is exactly preserved by our slope selecting
scheme. h

Remark 2.1. In practical computation, the integral
R x

jþ1
2

x
j�1

2

ĥ dx in the interface type source term approximation

(2.46) cannot be exactly computed. This is because the values of ĥ is solved by Newton iteration from the alge-

braic equation (2.44), and the integral is approximated by composite quadrature rules. Therefore in practical
use the slope selecting method generally cannot exactly preserve a non-stationary steady state solution across

the bottom step. However, the integral
R x

jþ1
2

x
j�1

2

ĥ dx in the source term approximation can be computed with any

desired accuracy by specifying the accuracy of the Newton iteration for computing values of ĥ and using
enough nodal number in the integral quadrature. Thus in practical computation the slope selecting method
can be designed to preserve the steady state solution described in Theorem 2.2 with any desired accuracy at
one time step.

Satisfying Z-property exactly and S-property with any desired accuracy enables our slope selecting method
to be efficient in steady state preserving for shallow water equation with general discontinuous and variable
bottom topography. The steady state capturing property of our method cannot be similarly proved as for
the method in [23] due to the complication of defining interface values of conserved variables by the slope
selecting strategy used for the source term approximation. We leave the efficiency of our method in steady
state capturing demonstrated by numerical experiments. For example, our method gives satisfactory conver-
gent solutions for the shallow water Riemann problems with a bottom step, as shown in Examples 2.1 and 2.2.

2.4. Extension of the slope selecting method to 2D shallow water equations

In two space dimensions the shallow water equations are given by
ht þ ðhuÞx þ ðhvÞy ¼ 0; ð2:54Þ

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

þ ðhuvÞy ¼ �ghBx; ð2:55Þ

ðhvÞt þ ðhuvÞx þ hv2 þ 1

2
gh2

� �
y

¼ �ghBy ; ð2:56Þ
where h is the water height, u,v are the velocity in x,y direction, respectively, and B is the bottom topography.
g is the gravitational constant.

In two space dimension one cannot derive an algebraic relation like (2.3) and (2.4) for the steady state solu-
tion. Therefore, we will just extend our 1D slope selecting method to 2D dimension-by-dimension.

For a general quantity q, its two dimensional cell average value qij is given by
qij ¼
1

DxDy

Z x
iþ1

2

x
i�1

2

Z y
jþ1

2

y
j�1

2

qðx; yÞ dx dy;
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while the one-dimensional average is defined, for example, by
qiþ1
2;j
¼ 1

Dy

Z y
jþ1

2

y
j�1

2

qðxiþ1
2
; yÞ dy.
The cell average method for (2.54)–(2.56) takes the form
othij þ
m1iþ1

2;j
� m1i�1

2;j

Dx
þ

m2i;jþ1
2
� m2i;j�1

2

Dy
¼ 0; ð2:57Þ

otðhuÞij þ
e1iþ1

2;j
� e1i�1

2;j

Dx
þ

e2i;jþ1
2
� e2i;j�1

2

Dy
¼ �ghij

Biþ1
2;j
� Bi�1

2;j

Dx
; ð2:58Þ

otðhvÞij þ
f 1iþ1

2;j
� f 1i�1

2;j

Dx
þ

f 2i;jþ1
2
� f 2i;j�1

2

Dy
¼ �ghij

Bi;jþ1
2
� Bi;j�1

2

Dy
; ð2:59Þ
where m1i�1
2;j
; m2i;j�1

2
; e1i�1

2;j
; e2i;j�1

2
; f 1i�1

2;j
; f 2i;j�1

2
are the corresponding numerical fluxes at interfaces given

by a conservative solver for the 1D homogeneous shallow water equations in x and y direction, respectively.
Similar to 1D case, in 2D SGM [40] is also based on the same numerical scheme as the cell average method
with the two sides values of water height used for solving the numerical fluxes at a mesh interface obtained
through gradient of water surface level.

In this paper, we only consider the simple situation that the bottom discontinuous line locates on the center
line of a cell. That is, for a cell centered at (xk,yl), the bottom discontinuous line occupies either the line seg-
ment ðxk�1

2
; y lÞ � ðxkþ1

2
; ylÞ, or the line segment ðxk; yl�1

2
Þ � ðxk; ylþ1

2
Þ. It is not clear yet whether the present

scheme can be directly applied to the more general case of the bottom discontinuous line slantwise crossing
a cell, e.g. cutting a corner of a cell. Investigating for such general case will be of help for designing efficient
numerical method for 2D shallow water equations with curved bottom discontinuous line using a uniform
mesh, and is of interest in the future study.

When a cell centered at (xk,yl) contains discontinuous line of bottom, we add in our slope selecting strategy
in the cell and its adjacent cells on the basis of SGM. In the following we discuss the case that the discontin-
uous line of B occupies the line segment ðxk; yl�1

2
Þ � ðxk; ylþ1

2
Þ. We define the quantities at ðk � 1

2
; lÞ; ðk þ 1

2
; lÞ
h�k�1
2;l
¼ 2hklhk�1;l

hkþ1;l þ hk�1;l

; h�kþ1
2;l
¼ 2hklhkþ1;l

hkþ1;l þ hk�1;l

; ð2:60Þ

g�k�1
2;l
¼ h�k�1

2;l
þ Bk�1

2;l
. ð2:61Þ
We set the x-directional water height slope in the cell (k, l) to be
h�kþ1
2;l
� h�k�1

2;l

Dx
and modify the slopes for water surface level in x-direction in cells (k � 1, l), (k + 1, l) to be
Sk�1;l ¼
signfgk�1;l � gk�2;lg þ signfg�

k�1
2;l
� gk�1;lg

2Dx
minfjgk�1;l � gk�2;lj; jg�k�1

2;l
� gk�1;ljg; ð2:62Þ

Skþ1;l ¼
signfgkþ2;l � gkþ1;lg þ signfgkþ1;l � g�

kþ1
2;l
g

2Dx
minfjgkþ2;l � gkþ1;lj; jgkþ1;l � g�kþ1

2;l
jg. ð2:63Þ
Since the bottom discontinuous line is vertical in the cell (k, l), we do not modify the y-directional slopes in this
cell and its adjacent cells.

Above are the description of our slope selecting strategy near this cell (k, l). We then present our slope
selecting scheme in this cell. First we calculate the numerical fluxes for this cell from solving homogeneous
equations.

With the application of our slope selecting strategy, the values of water height on the two sides of the cell
interfaces ðxk�1

2
; ylÞ are
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hL
k�1

2;l
¼ gk�1;l þ

1

2
DxSk�1;l

� �
� Bk�1

2;l
; hR

k�1
2;l
¼ h�k�1

2;l
;

hL
kþ1

2;l
¼ h�kþ1

2;l
; hR

kþ1
2;l
¼ gkþ1;l �

1

2
DxSkþ1;l

� �
� Bkþ1

2;l
with h�k�1
2;l

defined in (2.60) and Sk±1,l defined in (2.62), (2.63).

The left and right values of momentum are obtained in the same way as SGM. These two sides values of
conserved variables at interfaces ðxk�1

2
; y lÞ are used in solving the x-directional 1D homogeneous shallow water

equations to get the x-directional numerical fluxes m1k�1
2;l

e1k�1
2;l
; f 1k�1

2;l
.

We define the quantities at ðk � 1
2
; lÞ; ðk þ 1

2
; lÞ
u�k�1
2;l
¼

m1k�1
2;l

h�k�1
2;l

; u�kþ1
2;l
¼

m1kþ1
2;l

h�kþ1
2;l

. ð2:64Þ
The y-directional numerical fluxes m2k;l�1
2
; e2k;l�1

2
; f 2k;l�1

2
in this cell are obtained without modification to

SGM since the y-directional slopes near this cell are not modified.
We then use the one dimensional interface type source term approximation with needed interface values of

water height and x-directional velocity chosen to be (2.60) and (2.64) to replace the cell average source term
discretization in formula (2.58) which SGM uses. Namely, we replace the formula (2.58) in the cell average
scheme in this cell by
otðhuÞkl þ
e1kþ1

2;l
� e1k�1

2;l

Dx
þ

e2k;lþ1
2
� e2k;l�1

2

Dy
¼ �g

1

Dx

Z x
kþ1

2

x
k�1

2

ĥ dx

0@ 1ABkþ1
2;l
� Bk�1

2;l

Dx
; ð2:65Þ
where as in one dimension, the function ĥ is defined together with function û in the interval ½xk�1
2
; xkþ1

2
� by
ĥû ¼ H ; ð2:66Þ
1

2
û2 þ gĥþ gbB ¼ G; ð2:67Þ
or ĥ can be determined by
1

2

H 2

ĥ2
þ gĥþ gbB ¼ G ð2:68Þ
with functions H, G, bB in the interval ½xk�1
2
; xkþ1

2
� set to be linear satisfying the endpoint values
HðxiÞ ¼ h�ilu
�
il; GðxiÞ ¼

1

2
u�il
� �2 þ gh�il þ gBil; bBðxiÞ ¼ Bil; i ¼ k � 1

2
: ð2:69Þ
As the same to our 1D method, we use the Newton iteration to solve values of ĥ from (2.68) and use the
numerical integration to evaluate the integral of function ĥ to deal with the source term approximation in
the scheme (2.65).

If the discontinuous line of B occupies the line segment ðxk�1
2
; y lÞ � ðxkþ1

2
; ylÞ, the application of our slope

selecting strategy in y-direction on the basis of SGM, and the replacement of the cell average formula
(2.59) by our interface-type scheme is similar.

We use the scheme of SGM in all the other cells do not containing a bottom discontinuous line with the
mention that the slope of water surface level in the cell adjacent to a bottom discontinuous line is modified
by our slope selecting strategy.
2.5. Numerical examples

In this section, we give five 1D numerical examples and one 2D example. We use the second order TVD
Runge–Kutta time discretization [35] for all the examples. Examples 2.1 and 2.2 are Riemann problems from
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[1] and have been tested by our methods in [23,24]. These two examples are used to show that our method
works well for calculating unsteady state solutions for shallow water equations with discontinuous bottom.
The gravitational constant is set to be 9.8. These two Riemann problems are defined on the domain
[�10,10]. The zeroth order extrapolation is used as numerical boundary condition. The exact solutions are
available for these problems [1], and we can perform the convergence rates tests for our numerical solutions
in these examples.

Example 2.3 is a steady state capturing problem tested in [24] and shows that our method is efficient in
steady state capturing calculation.

Examples 2.4 and 2.5 are used to test the steady state preserving property of our method. Example 2.4 is a
problem of tidal wave propagating over a discontinuous bottom and Example 2.5 is a quasi-steady state com-
puting problem. These two examples show that our method has strong ability to preserve steady state solu-
tions when bottom contains both discontinuities and variable continuous part.

Example 2.6 is a 2D Riemann problem tested in [24] and is used to test the effectiveness of the extension of
our slope selecting method to 2D problem.

Example 2.1. A Riemann problem with solution in supercritical state.

The initial data are given by (h,v,B) = (4,�10,0) when x < 0 and (h,v,B) = (1,�6,1) when x > 0. This is a
supercritical case. We take Dt

Dx ¼ 1=20, and compute the solution using HLLE solver and relaxation scheme. See
Appendix A for the description of the numerical fluxes provided by these solvers for shallow water equations.
The constant bC (defined in Appendix A) in subcharacteristic condition in relaxation scheme is chosen as 50.
The results by using 100 cells are plotted in Figs. 2–4 versus the exact solution. One can see our solutions cor-
rectly predict that the energy is constant across the bottom step. The exact solution for this example is given in
Appendix B.

Table 1 lists the relative l1-errors of the computed conserved variables on the whole computational domain
with different meshes by our method using both solvers. The results present to be approximately first order
convergent, showing the effectiveness of our method for computing unsteady state solution for discontinuous
bottom problem.
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Fig. 2. Example 2.1, the supercritical case. Water level at t = 0.5 along with the bottom topography. Solid line: the exact solution; ‘‘s’’:
the solution of HLLE solver using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells; dashed line: bottom topography.
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Fig. 3. Example 2.1, supercritical case. Froude number vffiffiffiffi
gh
p at t = 0.5. Solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 4. Example 2.1, supercritical case. Energy 1
2
v2 þ gðhþ BÞ at t = 0.5. Solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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We can show the effectiveness of our method by another numerical test. Consider the homogeneous shallow
water Riemann problem with the same gravitational constant with initial data
Table
Relativ

Errors

HLLE

h

m

Relaxa

h

m

Table
Relativ

Errors

Riema

h

m

Homog

h

m

ðh; vÞ ¼
ð4;�10Þ; x < 0;

ðhR; vRÞ; x > 0;

�
ð2:70Þ
where hR,vR are the solution values in the exact solution of this example to the left of the bottom jump and to
the right of the left going shock. According to Appendix B, vR ¼ �6

hR
, and the six effective number truncation for

hR is 0.774464. In our computation these values are chosen such that the truncation errors have insignificant
influence on the results of the following numerical test.

The solution of the homogeneous Riemann problem with initial data (2.70) on x > 0 is its initial right state,
and on x < 0 is the same as the exact solution on x < 0 for this example. Thus we can use the homogeneous
shallow water equations solver used in the slope selecting method to solve this homogeneous Riemann prob-
lem and compare the solution errors on x < 0 with those by the slope selecting method for this example.

We choose the HLLE scheme to perform the test. In Table 2 we list, respectively, the relative l1-errors on
[�10,�0.5] of the computed conserved variables by the slope selecting method using HLLE scheme for this
example and by HLLE scheme for the homogeneous Riemann problem.

These errors are comparable and those by the slope selecting method are slightly larger. In fact, one cannot
expect the solution errors by the slope selecting method are even smaller since the solved problem contains a
bottom step across which the solution errors are produced. The similarity of the solution errors shows that the
solution errors across the bottom step in this example are much small compared with those away from bottom
step produced by the shock capturing scheme, and exhibits the effectiveness of our slope selecting method to
control the energy conservation across the bottom step in this unsteady state example.

Example 2.2. A Riemann problem with solution in the transcritical state.

The initial data are (h,v,B) = (4,�10,0) when x < 0 and (h, v,B) = (2,0,1) when x > 0. This is a transcrit-
ical case. The solution reaches the critical state at the right side of the bottom jump. We take Dt

Dx ¼ 1=20. We
choose the constant bC in subcharacteristic condition in relaxation scheme as 50. The solutions obtained by
HLLE solver and relaxation scheme using 200 cells, along with the exact solution, are plotted in Figs. 5–7.
The results can correctly predict that the Froude number vffiffiffiffi

gh
p reaches �1 at the right side of the bottom jump.

This is due to the fix used in our source term approximation for the transcritical case. The exact solution for
this example is given in Appendix B.
1
e l1-errors of computed conserved variables for Example 2.1 in the computational domain [�10,10]

100 Cells 200 Cells 400 Cells 800 Cells 1600 Cells

scheme

1.8283E � 2 9.7519E � 3 4.6468E � 3 2.4952E � 3 1.1722E � 3
2.4744E � 2 1.2808E � 2 6.4067E � 3 3.2823E � 3 1.6203E � 3

tion scheme

1.4742E � 2 7.7922E � 3 3.7653E � 3 2.4373E � 3 1.1651E � 3
1.8481E � 2 9.4937E � 3 4.8174E � 3 3.4457E � 3 1.7094E � 3

2
e l1-errors of computed conserved variables in the domain [�10,�0.5] using HLLE scheme

100 Cells 200 Cells 400 Cells 800 Cells

nn problem with bottom step

2.5618E � 2 1.3745E � 2 6.5361E � 3 3.5176E � 3
3.3155E � 2 1.7229E � 2 8.6187E � 3 4.4153E � 3

eneous Riemann problem

2.3660E � 2 1.3103E � 2 6.2982E � 3 3.4202E � 3
3.1075E � 2 1.6420E � 2 8.2996E � 3 4.2824E � 3
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There is a visible spike in the numerical solutions of energy at bottom discontinuity. As mentioned in [24],
this spike is a numerical artifact, due to the use of numerical viscosity. This phenomenon was analyzed in [22].
Even with mesh refinement, this spike does not disappear. This phenomenon is reasonable since one does not
necessarily expect the numerical solutions to be convergent in l1-norm in the cell containing a bottom discon-
tinuity since the solutions are discontinuous in that cell. This numerical spike does not effect the other part of
the numerical solution, i.e. does not effect the l1-convergence of the numerical solutions, as seen from the
l1-errors of our numerical solutions presented in the following.

In Table 3 we present the relative l1-errors of the computed conserved variables on the whole computational
domain with different meshes by our slope selecting method using both solvers. Again it is shown that the
numerical solutions for this example are convergent with approximate first order rate. This whole computa-
tional domain l1-convergence rate is the same as that by using second order shock capturing scheme to solve
homogeneous shallow water Riemann problem.

Example 2.3. A steady state capturing calculation.

This is a problem tested in [24]. The computational domain is [�10,10]. We choose the bottom function to
be
Fig. 5.
solutio
BðxÞ ¼
0; x < �4;

1þ cos px
8

� �
; �4 < x < 4;

1; x > 4;

8><>:

as shown by the dashed line in Fig. 8. The initial conditions are given by
hðx; 0Þ ¼ 3� BðxÞ;

vðx; 0Þ ¼ 2

hðx; 0Þ ;
the boundary conditions are given as hv|x=�10 = 2,h|x=10 = 2. The gravitational constant is set to be 9.8. We
take Dt

Dx ¼ 1=10 and use HLLE solver to solve the homogeneous shallow water equations. Figs. 9–11 show,
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Example 2.2, transcritical case. Water level at t = 0.5 along with bottom topography; solid line: the exact solution; ‘‘s’’: the
n of HLLE solver using 200 cells; ‘‘·’’: the solution of relaxation scheme using 200 cells; dashed line: bottom topography.
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Fig. 6. Example 2.2, transcritical case. Froude number vffiffiffiffi
gh
p at t = 0.5; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 200 cells; ‘‘·’’: the solution of relaxation scheme using 200 cells.
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respectively, the water surface, Froude number vffiffiffiffi
gh
p and energy 1

2
v2 þ gðhþ BÞ in the obtained steady state solu-

tions by our slope selecting method. These results match with those given in [24]. The results of our method
using 100 cells agrees well with that using 400 cells and show accurately the energy are equal at two sides of
bottom discontinuity at x = �4. The steady state solution belongs to Definition 2.1 with states at two sides of
bottom discontinuity being both subcritical. The steady state solution is subcritical at left of the domain and
transfers into supercritical at x = 0 which is the maximum bottom point, and again transfers back to subcrit-
ical through a standing transcritical shock.

Example 2.4. A tidal wave flow over discontinuous bottom.

This is a problem modified from [39]. The domain for this problem is [0, 1500]. In this example we choose
the bottom function to be a variable discontinuous one
BðxÞ ¼ 8þ sin x
50

� �
; 3

8
� 1500 6 x 6 5

8
� 1500;

0; else:

�

The initial and boundary conditions are
hðx; 0Þ ¼ HðxÞ;
vðx; 0Þ ¼ 0
and
hð0; tÞ ¼ Hð0Þ þ 4� 4 sin p
4t

86400
þ 1

2

� �	 

;

vðL; tÞ ¼ 0;
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Fig. 7. Example 2.2, transcritical case. Energy 1
2
v2 þ gðhþ BÞ at t = 0.5; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 200 cells; ‘‘·’’: the solution of relaxation scheme using 200 cells.

Table 3
Relative l1-errors of computed conserved variables for Example 2.2 in the computational domain [�10,10]

Errors 100 Cells 200 Cells 400 Cells 800 Cells 1600 Cells

HLLE scheme

h 1.7959E � 2 9.0223E � 3 4.4579E � 3 2.6792E � 3 1.3661E � 3
m 3.5572E � 2 1.8205E � 2 9.1940E � 3 6.0454E � 3 3.0565E � 3

Relaxation scheme

h 2.5314E � 2 1.2827E � 2 6.1377E � 3 2.8983E � 3 1.5084E � 3
m 3.3850E � 2 1.7393E � 2 8.8757E � 3 4.4184E � 3 2.3131E � 3
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where H(x) = H(0) � B(x), H(0) = 16 and L = 1500.
An asymptotic analytical solution is given by [3,39]
hðx; tÞ ¼ HðxÞ þ 4� 4 sin p
4t

86400
þ 1

2

� �	 

; ð2:71Þ

uðx; tÞ ¼ ðx� LÞp
5400hðx; tÞ cos p

4t
86400

þ 1

2

� �	 

. ð2:72Þ
This asymptotic solution does not depend on gravitational constant g since this solution is obtained by asymp-
totic expansion with respect to small Froude number [3]. In this example, we choose the gravitational constant
g = 9.81 · 16 so that the corresponding Froude number is small enough. We use the relaxation scheme with
the constant bC in subcharacteristic condition set from the initial data. We use 96 cells to let the discontinuity
of bottom located in the cell center and take Dt

Dx ¼ 1=60. We plot the water height and velocity of our method at
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Fig. 8. Example 2.3, steady state capturing. Water surface at steady state along with bottom topography; solid line: water surface; dashed
line: bottom topography.
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Fig. 9. Example 2.3, steady state capturing. Water surface at steady state by the slope selecting method; solid line: solution using 400 cells;
‘‘s’’: solution using 100 cells.
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Fig. 10. Example 2.3, steady state capturing. Froude number vffiffiffiffi
gh
p at steady state by the slope selecting method; solid line: solution using

400 cells; ‘‘s’’: solution using 100 cells.
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Fig. 11. Example 2.3, steady state capturing. Energy 1
2
v2 þ gðhþ BÞ at steady state by the slope selecting method; solid line: solution using

400 cells; ‘‘s’’: solution using 100 cells.
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t = 10,800, which is one quarter of the tidal period in Figs. 12 and 13 and the velocity at t = 32,400, which is
three quarter of the tidal period in Fig. 14 along with the asymptotic solutions. Our solutions match with the
asymptotic solutions well in these results.

Example 2.5. A quasi-steady propagation.

In this example we test a quasi-steady problem using our slope selecting scheme. This quasi-steady problem
is similar to the example tested by LeVeque in [30] but we now choose a discontinuous bottom and non-
stationary steady state. We choose bottom function as
Fig. 12
metho
BðxÞ ¼ cos px
8

� �
; 0 6 x 6 4;

0; else

�

on �10 < x < 10, as shown by the dashed line in Fig. 15. The gravitational constant is set to be 9.8. We choose
a subcritical steady state solution h0,v0 on [�10,10] belonging to Definition 2.1 satisfying
h0v0 ¼ 1;

1

2
v2

0 þ gðh0 þ BÞ ¼ 19:6.
We choose initial water height value and velocity value as
hðx; 0Þ ¼ h0 þ 1
98
; �8 6 x 6 �5;

h0; else

�

and vðx; 0Þ ¼ 1

hðx;0Þ. The initial water surface and Froude number are plotted in Figs. 16 and 17, respectively. In
our scheme the zeroth order extrapolation is used as numerical boundary condition. We use HLLE scheme as
the homogeneous shallow water equations solver and obtain the reference solution using our slope selecting
method with 2000 grid points. We use 100 cells and take Dt

Dx ¼ 1=10. The initial disturbance splits into two
0 500 1000 1500

0

5

10

15

20

25

. Example 2.4, tidal flow. Water height at t = 10,800; solid line: the asymptotic solution; ‘‘s’’: the solution of the slope selecting
d using 96 cells; dashed line: bottom topography.
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Fig. 13. Example 2.4, tidal flow. Velocity at t = 10,800; solid line: the asymptotic solution; ‘‘s’’: the solution of the slope selecting method
using 96 cells.
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Fig. 14. Example 2.4, tidal flow. Velocity at t = 32,400; solid line: the asymptotic solution; ‘‘s’’: the solution of the slope selecting method
using 96 cells.
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Fig. 15. Example 2.5, quasi-steady problem. Initial water surface along with bottom topography; solid line: water surface; dashed line:
bottom topography.
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Fig. 16. Example 2.5, quasi-steady problem. Initial water surface.
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waves propagating in different directions, as shown in Fig. 18, which shows the numerical solutions of water
surface at t = 0.5. As the right going disturbance reaches the position of bottom discontinuity, it again splits
into two disturbances – one goes back to the left and one continue going to the right. Fig. 19 show the
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Fig. 17. Example 2.5, quasi-steady problem. Initial Froude number.
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Fig. 18. Example 2.5, quasi-steady problem. Water surface at t = 0.5; solid line: the reference solution; ‘‘s’’: the solution of the slope
selecting method using 100 cells; ‘‘·’’: the solution of SGM using 100 cells.
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Fig. 19. Example 2.5, quasi-steady problem. Water surface at t = 2.5; solid line: the reference solution; ‘‘s’’: the solution of the slope
selecting method using 100 cells; ‘‘·’’: the solution of SGM using 100 cells.
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solutions of water surface at t = 2.5. At this time, the initially left going disturbance already leaves the domain
and the two visible disturbances are split from the initially right going disturbance. Compared with the refer-
ence solutions, the solutions by our slope selecting scheme using 100 cells can efficiently preserve the steady
state solution and correctly predict the positions of propagating disturbances. In comparison, Figs. 18 and
19 also depict the solution given by SGM. SGM fails to preserve the subcritical equal energy solution across
the bottom discontinuity. In Fig. 18 the solution near bottom discontinuity should remain unchanged as pre-
dicted by the slope selecting method since the disturbance does not reach there yet, but the solution by SGM
shows a substantial change near the bottom discontinuity. As mentioned formerly, SGM does not hold the S-
property, and is improper in preserving (non-stationary) steady state solution when bottom is discontinuous.

Example 2.6. A 2D Riemann problem.

In this example we consider the calculation of unsteady state solution of a 2D Riemann problem with dis-
continuous bottom. The problem is defined in the square (x,y) 2 [0, 200] · [0,200]. The initial data are
(h,u,v,B) = (15,�0.1,0.1, 0) when (x,y) 2 [0,100] · [100,200] and (h,u,v,B) = (10,�0.1, 0.1,10) elsewhere.
The solution of this problem describe the motion of water outside the square [0,100] · [100, 200] into this
region across the bottom discontinuous line. The gravitational constant is chosen to be 9.8. We use the zeroth
order extrapolation boundary condition. We use the uniform space mesh and take Dt

Dx ¼ Dt
Dy ¼ 1=20.

In the space discretization we use the Roe solver for 1D homogeneous shallow water equations in x or y

direction [37] to obtain the numerical fluxes. Figs. 20 and 21 draw, respectively, the water surface and the
quantity 1

2
u2 þ gðhþ BÞ at t = 4 by our 2D slope selecting method using 100 · 100 cells. In the quantity

1
2
u2 þ gðhþ BÞ, u is the x-directional velocity. This quantity represents the sum of potential energy and x-direc-

tional kinetic energy.
In Figs. 22–25, we plot, respectively, water surface and the quantity 1

2
u2 þ gðhþ BÞ at y = 180,120 at t = 4

by our 2D slope selecting method using 100 · 100, 400 · 400 and 800 · 800 cells. The comparison between
numerical solutions by different meshes show the convergence of the numerical solutions. In particular, our
results using 100 · 100 cells already have high resolution near bottom discontinuous line.



Fig. 20. Example 2.6, a 2D Riemann problem. Water surface at t = 4 by the 2D slope selecting method using 100 · 100 cells.

Fig. 21. Example 2.6, a 2D Riemann problem. 1
2
u2 þ gðhþ BÞ at t = 4 by the 2D slope selecting method using 100 · 100 cells.
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Since this example has no exact solution available, a feasible way to check the validity of our numerical
results is to compare the results with those computed by another method with different mechanism. The match
of the results by two methods designed by different principle will make it sound that both methods are valid. In
[24], the continuous bottom cell average method (CBCAM) has been used to compare with the interface type
methods designed there. The CBCAM is a reasonable approach for discontinuous bottom problem by replac-
ing the bottom discontinuity (line) with a continuous bottom transition zone. The conventional cell average
method is applied to the regularized continuous bottom problem with enough cell numbers putting in the
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Fig. 22. Example 2.6, a 2D Riemann problem. Water surface at t = 4, y = 180 by the 2D slope selecting method; solid line: solution using
800 · 800 cells; ‘‘Æ’’: solution using 400 · 400 cells; ‘‘s’’: solution using 100 · 100 cells.
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Fig. 23. Example 2.6, a 2D Riemann problem. Water surface at t = 4, y = 120 by the 2D slope selecting method; solid line: solution using
800 · 800 cells; ‘‘Æ’’: solution using 400 · 400 cells; ‘‘s’’: solution using 100 · 100 cells.
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transition zone. The transition zone width tends to zero with regard to decreasing Dx. The details are given in
[24]. This CBCAM has been tested to work for 1D discontinuous bottom problem. For 2D problem, the inter-
face type methods in [24] have been checked to match well with those by CBCAM using fine mesh. When using
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Fig. 24. Example 2.6, a 2D Riemann problem. 1
2
u2 þ gðhþ BÞ at t = 4, y = 180 by the 2D slope selecting method; solid line: solution using

800 · 800 cells; ‘‘Æ’’: solution using 400 · 400 cells; ‘‘s’’: solution using 100 · 100 cells.
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Fig. 25. Example 2.6, a 2D Riemann problem. 1
2
u2 þ gðhþ BÞ at t = 4, y = 120 by the 2D slope selecting method; solid line: solution using

800 · 800 cells; ‘‘Æ’’: solution using 400 · 400 cells; ‘‘s’’: solution using 100 · 100 cells.
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course mesh, the interface type methods in [24] are shown to be more effective than CBCAM since the regu-
larization of the source term in CBCAM makes the solution lose resolution near bottom discontinuous line.
The results by our slope selecting method are similar to those given by the interface type methods in [24]. They
match with those given by CBCAM using fine mesh, and have much higher resolution near bottom discon-
tinuous line than those by CBCAM when using coarse mesh.
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From the results by our slope selecting method as well as comparable results by other methods, one
observes the phenomenon that across the bottom discontinuous line the potential energy plus normal direc-
tional kinetic energy is equal. For example, the quantity 1

2
u2 þ gðhþ BÞ is equal across a bottom discontinuous

line which is parallel to y axis, as shown in Figs. 24 and 25.
3. The isothermal nozzle flow equations

Consider the system describing the evolution of an isothermal fluid in a nozzle
otðaqÞ þ oxðaqvÞ ¼ 0; ð3:1Þ
otðaqvÞ þ oxðaqv2 þ kaqcÞ ¼ pðqÞoxa; ð3:2Þ
where q,v represent density and velocity of the fluid, a(x) > 0 is the cross-sectional area, p(q) is the pressure
given by the relation
pðqÞ ¼ kqc.
Equations (3.1), (3.2) reduce to the standard isentropic equations when a(x) is constant.
The cell average method for above isothermal nozzle flow equations takes the form
otðaqÞj þ
mjþ1

2
� mj�1

2

Dx
¼ 0; ð3:3Þ

otðaqvÞj þ
ejþ1

2
� ej�1

2

Dx
¼ kqc

j

ajþ1
2
� aj�1

2

Dx
; ð3:4Þ
where mj�1
2
; mjþ1

2
; ej�1

2
; ejþ1

2
denote, respectively, numerical fluxes for conserved variables aq and aqv at inter-

faces j� 1
2
; jþ 1

2
obtained by solving the homogeneous part of equations (3.1), (3.2).

When the steady state solution is smooth, the steady state solutions satisfy
aqv ¼ C1; ð3:5Þ
1

2
v2 þ k

c
c� 1

qc�1 ¼ C2. ð3:6Þ
In the study [28] for isothermal nozzle flow Riemann problem with a cross-sectional step, the authors con-
struct a wide class of solutions under the smooth steady state conditions across the cross-sectional step. Sim-
ilar for the shallow water equations, in the smooth steady state conditions across the cross-sectional step, the
momentum and energy conservation (3.5), (3.6) hold. The two sides states can be both subsonic jvjffiffiffiffiffiffiffiffiffi

kcqc�1
p < 1 or

be both supersonic jvjffiffiffiffiffiffiffiffiffi
kcqc�1
p > 1, but a direct transition between subsonic and supersonic states across the cross-

sectional step is not allowed. The subsonic or supersonic state can be connected with a transonic state
jvjffiffiffiffiffiffiffiffiffi

kcqc�1
p ¼ 1 to compose the smooth steady state flow across the cross-sectional step with the condition that

the transonic state is reached at the lower cross-sectional area step side.

With the above steady state conditions across the cross-sectional discontinuity, we define the corresponding
steady state solutions for the isothermal nozzle flow equations (3.1), (3.2) with discontinuous cross-sectional
area as follows.

Definition 3.1. Steady state solutions to isothermal nozzle flow equations with discontinuous cross-sectional
area: for a given initial condition to isothermal nozzle flow equations (3.1), (3.2) with discontinuous cross-
sectional area, the solution will remain unchanged, i.e. the initial condition is the steady state solution for
isothermal nozzle flow equations with discontinuous cross-sectional area, if the initial condition is steady state
solution on continuous cross-sectional part, and across the cross-sectional discontinuity the conditions (3.5),
(3.6) hold, namely
alqlvl ¼ arqrvr; ð3:7Þ
1

2
v2

l þ k
c

c� 1
ðqlÞ

c�1 ¼ 1

2
v2

r þ k
c

c� 1
ðqrÞ

c�1
; ð3:8Þ
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where ql,vl,al and qr,vr,ar are the density, velocity in the initial condition and the cross-sectional area at two
sides of the cross-sectional discontinuity, and one of the following situations occurs
ðiÞ jvljffiffiffiffiffiffiffiffiffiffiffiffiffi
kcqc�1

l

q < 1;
jvrjffiffiffiffiffiffiffiffiffiffiffiffiffi
kcqc�1

r

q < 1; ð3:9Þ

ðiiÞ jvljffiffiffiffiffiffiffiffiffiffiffiffiffi
kcqc�1

l

q > 1;
jvrjffiffiffiffiffiffiffiffiffiffiffiffiffi
kcqc�1

r

q > 1; ð3:10Þ

ðiiiÞ

jvl jffiffiffiffiffiffiffiffiffi
kcqc�1

l

p ¼ 1 if al < ar;

jvrjffiffiffiffiffiffiffiffiffi
kcqc�1

r

p ¼ 1 if al > ar:

8><>: ð3:11Þ
It is shown in [28] that the solutions constructed under such smooth steady state conditions described in Def-
inition 3.1 across the cross-sectional step form rich solution patterns. Therefore, such problems are commonly
encountered in which the solutions evolve to the steady state solutions belonging to Definition 3.1. In this sec-
tion, we are concerned with the steady state capturing and preserving for such steady state solutions belonging
to Definition 3.1.

3.1. Density gradient method (DGM)

We first study the steady state preserving method for isothermal nozzle flow Eq. (3.1), (3.2) when the cross-
sectional area is continuous. When the cross-sectional area is continuously variable, the cell average method does
not effectively preserve steady state solutions. In this case, similar to dealing with shallow water equations, one
can use a special data reconstruction procedure to combine with the cell average method to achieve the steady
state preserving role. Observe in the stationary steady state, (3.6) gives that the density is a constant. In the same
principle as SGM, one can take the following data reconstruction procedure based on the gradient of density.

(1) In the step of defining the slopes of conserved variables aq,aqv in each cell. Instead of defining the slope
of aq, define the slope(denoted by bSk) for density
bSk ¼ Gðqk�1; qk; qkþ1Þ;

where G is a standard slope limiter [29]. The slope of the conserved variable aqv is still defined since aqv is
a constant in the steady state.

(2) The values of aq on the left and right of the cell interface xkþ1
2

are
ðaqÞLkþ1
2
¼ akþ1

2
qk þ

1

2
DxbS k

� �
; ðaqÞRkþ1

2
¼ akþ1

2
qkþ1 �

1

2
DxbS kþ1

� �
.

The left and right values of aqv are still obtained by its cell average values and slopes. These left and right
values of conserved variables at interface xkþ1

2
are used by a homogeneous isothermal nozzle flow equa-

tions solver to get the numerical fluxes mkþ1
2
; ekþ1

2
.

(3) Once the numerical fluxes for conserved variables are obtained, one can use the cell average formula
(3.3), (3.4) as the numerical scheme.

Since this method uses the gradient of density instead of that of the conserved variable aq in constructing
the two sides values at the interface, we name this method as the density gradient method (DGM). Similar to
proving Z-property of SGM, one can prove that DGM can exactly preserve the stationary flow for isothermal
nozzle flow equations with a continuously variable cross-sectional area (Z-property).

3.2. The slope selecting method

In the same principle as the shallow water equations, our slope selecting method for isothermal nozzle flow
equations can be described as follows. Our method is based on DGM, incorporating the slope selecting
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strategy and interface type source term approximation near or in the cell containing the cross-sectional area
discontinuity. Assume a discontinuity of cross-section is contained in the center of the cell ½xj�1

2
; xjþ1

2
�. Let ai be

the interface values of a at xiði ¼ j� 1
2
; jþ 1

2
Þ. Now define the quantities at interfaces j� 1

2
; jþ 1

2

ðaqÞ�j�1
2
¼

2ðaqÞjðaqÞj�1

ðaqÞjþ1 þ ðaqÞj�1

; ðaqÞ�jþ1
2
¼

2ðaqÞjðaqÞjþ1

ðaqÞjþ1 þ ðaqÞj�1

; ð3:12Þ

q�j�1
2
¼
ðaqÞ�j�1

2

aj�1
2

. ð3:13Þ
In the cell centered at xj we directly define the slope for the conserved variable aq to be
ðaqÞ�jþ1
2
� ðaqÞ�j�1

2

Dx
. ð3:14Þ
In cells j � 1, j + 1 we set slopes for density q to be
bS j�1 ¼
signfqj�1 � qj�2g þ signfq�

j�1
2
� qj�1g

2Dx
minfjqj�1 � qj�2j; jq�j�1

2
� qj�1jg; ð3:15Þ

bSjþ1 ¼
signfqjþ2 � qjþ1g þ signfqjþ1 � q�

jþ1
2
g

2Dx
minfjqjþ2 � qjþ1j; jqjþ1 � q�jþ1

2
jg. ð3:16Þ
The values of aq on the left and right of the cell interfaces xj�1
2

are
ðaqÞLj�1
2
¼ aj�1

2
qj�1 þ

1

2
DxbSj�1

� �
; ðaqÞRj�1

2
¼ ðaqÞ�j�1

2
;

ðaqÞLjþ1
2
¼ ðaqÞ�jþ1

2
; ðaqÞRjþ1

2
¼ ajþ1

2
qjþ1 �

1

2
DxbS jþ1

� �

with ðaqÞ�j�1

2
; bS j�1 defined in (3.12), (3.15) and (3.16).

The left and right values of aqv are obtained as in DGM. These left and right values of conserved variables
at interfaces xj�1

2
are used by a homogeneous isothermal nozzle flow equations conservative scheme to get the

numerical fluxes mj�1
2
; ej�1

2
.

Define quantities at j� 1
2

v�j�1
2
¼

mj�1
2

ðaqÞ�j�1
2

; v�jþ1
2
¼

mjþ1
2

ðaqÞ�jþ1
2

. ð3:17Þ
We then apply the interface type source term approximation described in [23] with the needed interface values
of q,v defined by (3.13), (3.17). Denote H i ¼ aiq�i v�i ; Gi ¼ 1

2
ðv�i Þ

2 þ k c
c�1
ðq�i Þ

c�1
; i ¼ j� 1

2
; jþ 1

2
. We choose

â,H,G to be linear functions on ½xj�1
2
; xjþ1

2
� so that
âðxiÞ ¼ ai; HðxiÞ ¼ H i; GðxiÞ ¼ Gi; i ¼ j� 1

2
; jþ 1

2
. ð3:18Þ
We choose smooth q̂; v̂ on ½xj�1
2
; xjþ1

2
� from
âq̂v̂ ¼ H ; ð3:19Þ
1

2
v̂2 þ k

c
c� 1

q̂c�1 ¼ G; ð3:20Þ
or q̂ from
1

2

H 2

â2q̂2
þ k

c
c� 1

q̂c�1 ¼ G; ð3:21Þ
with endpoint values
q̂ðxiÞ ¼ q�i ; v̂ðxiÞ ¼ v�i ; i ¼ j� 1

2
; jþ 1

2
. ð3:22Þ
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We then can use the following expression
k
1

Dx

Z x
jþ1

2

x
j�1

2

q̂c dx

0@ 1A ajþ1
2
� aj�1

2

Dx
to replace the source term approximation in cell average method (3.4). To obtain the integration value in the
above expression, we use the same numerical strategy as for shallow water equations. The values of q̂ are
solved from (3.21) according to the subsonic or supersonic state of the computed solution. When dealing with
the transonic problems, one also needs to add a transonic fix in the source term approximation. These are in
the same principle as the method in [23] and the details are presented there.

We use the scheme of DGM in all the other cells do not containing a cross-sectional discontinuity with the
mention that the slope of density in the cell adjacent to a cross-sectional discontinuity is modified by our slope
selecting strategy.

Similar to the conclusions for the shallow water equations, one can prove that our slope selecting method
for isothermal nozzle flow equations formally exactly preserves the (stationary or non-stationary) steady state
solutions belonging to Definition 3.1 in which no stationary shock exists when cross-sectional area is a step
function (S-property). The proof is given in Appendix C.
3.3. Numerical examples

We use numerical examples to demonstrate that our slope selecting method works well for unsteady calcu-
lation, steady state capturing and preserving for the isothermal nozzle flow equations with discontinuous
cross-sectional area. The second order TVD Runge–Kutta method [35] is used for time discretization in all
the examples. We choose k = 1, c = 4/3 in the computation.

Examples 3.1 and 3.2 are Riemann problems studied in [28] and have been tested by our methods in [23,24].
These two Riemann problems are solved numerically on the domain [�6,6]. For spatial discretization, we use
the HLLE solver or relaxation scheme for the homogeneous part of equations (3.1), (3.2). See Appendix A for
the description of the numerical fluxes provided by these solvers for isothermal nozzle flow equations. We take
Dt
Dx ¼ 1=5 for both problems. The zeroth extrapolation is used for numerical boundary conditions. The exact
solutions are available for these problems [28], and we show the slope selecting method gives convergent solu-
tions for these examples.

Example 3.3 is a steady state capturing problem tested in [24] and is used to show our method is efficient in
calculating steady state solution for isothermal nozzle flow equations with discontinuous cross-sectional area
with an improvement from our method in [24] in overcoming ‘‘slow convergence’’ phenomenon by using
shock capturing scheme with larger numerical viscosity.

Example 3.4 is quasi-steady computation problems and is used to test the steady state preserving property
of our method. This example shows that our slope selecting method has strong ability to preserve steady state
solutions when cross-section contains both discontinuities and continuous variable part.

Example 3.1. A Riemann problem with solution in the transonic state.

The initial data are (q,v,a) = (4,�1.8, 1.5) when x < 0 and (q,v,a) = (1, 2,2.5) when x > 0. This is a tran-
sonic case. The solution reaches critical state at the left side of the cross-sectional jump. The constant bC in
subcharacteristic condition in relaxation scheme is chosen to be 8. The solutions of the slope selecting method
based on HLLE solver and relaxation scheme using 100 cells along with the exact solution are plotted in Figs.
26–28. The transonic fix used in the source term approximation ensures our method correctly capture the tran-
sonic flow across the cross-sectional jump. The exact solution for this example is given in Appendix B. Table 4
lists the relative l1-errors of the computed conserved variables on the whole computational domain with dif-
ferent meshes by our method using both solvers. The first order convergence rate of our numerical solutions
can be observed in this table.

Example 3.2. A Riemann problem with solution in both super- and sub-sonic state.



358 X. Wen / Journal of Computational Physics 219 (2006) 322–390
The initial data are (q,v,a) = (4,�1.6,1.5) when x < 0 and (q,v,a) = (6,1,2.5) when x > 0. This is a mixed
sub- and super-sonic case. The constant bC in subcharacteristic condition in relaxation scheme is chosen to be
8. The solutions from the slope selecting method based on HLLE solver and relaxation scheme by using 100
cells along with the exact solution are shown in Fig. 29–31. The exact solution for this example is given in
Appendix B. Table 5 lists the relative l1-errors of the computed conserved variables on the whole computa-
tional domain with different meshes by our method using both solvers. One can observe our method gives first
order convergent numerical solutions for this example.

Example 3.3. A steady state capturing calculation.

The problem is defined in [�6,6]. We choose the cross-sectional area to be
Fig. 26
‘‘·’’: th
aðxÞ ¼

2; x < �2;

2þ 1
2

cos px
4

� �
; �2 < x < 0;

2:5� 1
2

cos px
6

� �
; 0 < x < 3;

2:5; x > 3:

8>>><>>>:

as shown in Fig. 32. The initial conditions are given by
qðx; 0Þ ¼ 4;

vðx; 0Þ ¼ 3

aðxÞqðx; 0Þ ;
the boundary conditions are given by qv|x=�6 = 1.2,q|x=6 = 4. The exact steady state solutions qe(x),ve(x) are
the subsonic solutions belonging to Definition 3.1 determined by the steady state equations
aðxÞqeðxÞveðxÞ ¼ 2:4;

1

2
ðveðxÞÞ2 þ k

c
c� 1

ðqeðxÞÞ
c�1 ¼ 0:0288þ 44=3.
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. Example 3.1, transonic case. Density at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver using 100 cells;
e solution of relaxation scheme using 100 cells.
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Fig. 27. Example 3.1, transonic case. Mach number vffiffiffiffiffiffiffiffiffiffi
kcqc�1
p at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 28. Example 3.1, transonic case. Energy 1
2
v2 þ k c

c�1
qc�1 at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver

using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 29. Example 3.2, mixed sub- and super-sonic case. Density at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of HLLE solver
using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.

Table 4
Relative l1-errors of computed conserved variables for Example 3.1 in the computational domain [�6,6]

Errors 100 Cells 200 Cells 400 Cells 800 Cells

HLLE scheme

q 1.7226E � 2 8.7752E � 3 4.3618E � 3 2.2309E � 3
m 1.9711E � 2 1.0194E � 2 5.1879E � 3 2.6164E � 3

Relaxation scheme

q 1.8507E � 2 1.0311E � 2 5.5495E � 3 2.6851E � 3
m 2.1113E � 2 1.1272E � 2 5.8273E � 3 2.9305E � 3
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We take Dt
Dx ¼ 1=2 and use HLLE solver to solve the homogeneous part of isothermal nozzle flow equations.

Figs. 33–35 show, respectively, the numerical steady state density, Mach number vffiffiffiffiffiffiffiffiffi
kcqc�1
p and energy

1
2
v2 þ k c

c�1
qc�1 by our slope selecting method. The numerical results show the energy are equal at two sides

of cross-sectional discontinuity with high accuracy. Table 6 lists the l1-norm of the errors between exact
and numerical steady state densities on different meshes. In this table, one can observe that the l1-convergence
rate of numerical steady state solutions are second order in both [�6,�0.2] and [0.2,6], but is first order in the
entire domain [�6,6] which includes the cross-sectional area discontinuity. These results show that our meth-
od is able to capture the steady state solution with second order accuracy in the domain where the cross-sec-
tional area and solution are smooth due to the effectiveness of our method in controlling energy conservation
across the cross-sectional discontinuity.

For this problem our methods in [24] using Roe solver encounter ‘‘slow convergence’’ phenomenon when
l1-error between numerical solutions at two adjacent time step reaches about 1E � 3. The slope selecting
method in this paper using HLLE solver does not encounter this phenomenon at least when the above men-
tioned l1-error decreases to less than 1E � 6. According to the analysis in [22], the ‘‘slow convergence’’ phe-
nomenon is related to the stability of the discrete viscous profile of the used scheme and can be alleviated by
using scheme having larger viscosity. The HLLE solver, which has larger numerical viscosity than the Roe
solver, performs better in reducing the ‘‘slow convergence’’ phenomenon in this problem.
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Fig. 30. Example 3.2, mixed sub- and super-sonic case. Mach number vffiffiffiffiffiffiffiffiffiffi
kcqc�1
p at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of

HLLE solver using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 31. Example 3.2, mixed sub- and super-sonic case. Energy 1
2
v2 þ k c

c�1
qc�1 at t = 0.8; solid line: the exact solution; ‘‘s’’: the solution of

HLLE solver using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 32. Example 3.3, steady state capturing. The nozzle cross-sectional area.

Table 5
Relative l1-errors of computed conserved variables for Example 3.2 in the computational domain [�6,6]

Errors 100 Cells 200 Cells 400 Cells 800 Cells

HLLE scheme

q 9.7698E � 3 4.9695E � 3 2.4871E � 3 1.2436E � 3
m 1.8490E � 2 9.4172E � 3 4.7348E � 3 2.3807E � 3

relaxation scheme
q 1.1542E � 2 5.8071E � 3 2.8531E � 3 1.4003E � 3
m 2.1156E � 2 1.0709E � 2 5.2692E � 3 2.6037E � 3
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This example reveals that it is frequently encountered that one may need to use different schemes to effi-
ciently deal with different problems. Thus the ability of our slope selecting method to be applicable to more
general shock capturing scheme for the homogeneous hyperbolic system makes our method more flexible in
dealing with various problems.

Example 3.4. Quasi-steady problems.

In this example we test quasi-steady problems using our slope selecting scheme. We use the zeroth order
extrapolation as numerical boundary condition in this example. We use HLLE scheme as the homogeneous
equations solver and obtain the reference solution using our method with 2000 grid points. The cross-sectional
area is chosen to be
aðxÞ ¼ 2:5� cos px
6

� �
; 0 6 x 6 3;

2:5; else

�
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Fig. 35. Example 3.3, steady state capturing. Energy 1
2
v2 þ k c

c�1
qc�1 at steady state; solid line: exact solution; ‘‘s’’ solution of the slope

selecting method using 100 cells.

Table 6
l1-Norm of errors of steady state density in different domains

Errors [�6,�0.2] [0.2,6] [�6,6]

50 Cells 2.807471E � 4 8.256022E � 5 5.725880E � 4
100 Cells 6.246616E � 5 1.642795E � 5 2.410718E � 4
200 Cells 1.208474E � 5 4.294303E � 6 1.090404E � 4
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on �6 < x < 6, as shown in Fig. 36.
First we test a case of the disturbance propagating in a stationary steady state. We choose the steady state

solution q0,v0 on [�6,6] to be q0 = 3.375,v0 = 0. We choose initial density value and velocity value as
qðx; 0Þ ¼ q0 þ 10�2; �4 6 x 6 �2;

q0; else

(

and v(x, 0) = v0. The initial density is plotted in Fig. 37. We use 100 cells and take Dt

Dx ¼ 1=2. The propagation
phenomenon of the initial disturbance is similar to that of shallow water flow. We plot our solutions of density
at t = 2.5,4 in Figs. 38 and 39, respectively. At t = 2.5, the right going disturbance begin to encounter the
cross-sectional discontinuity and at t = 4, the initially left going disturbance leaves the domain and the two
remaining visible disturbance are split from the initially right going disturbance.

We then test our scheme in predicting the propagation of disturbance in non-stationary steady state solu-
tion. The cross-sectional area is the same. We choose a subcritical steady state solution q0,v0 on [�6,6] belong-
ing to Definition 3.1 satisfying
aq0v0 ¼ �3;

1

2
v2

0 þ k
c

c� 1
qc�1

0 ¼ 6.
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We choose initial density value and velocity value as
qðx; 0Þ ¼
q0 þ 0:05; �4 6 x 6 �2;

q0; else

�

and vðx; 0Þ ¼ �3

aqðx;0Þ. The initial density and Mach number vffiffiffiffiffiffiffiffiffi
kcqc�1
p are plotted in Figs. 40 and 41, respectively.

We use 100 cells and take Dt
Dx ¼ 1=2. We plot in Fig. 42 the solutions of density at t = 1.5, when the two dis-

turbance visible is split from the initial disturbance, and plot in Fig. 43 the solutions of density at t = 4.5, when
the two disturbance visible is split from the initially right going disturbance.

For both cases, compared with reference solutions, the solutions by our slope selecting scheme using 100
cells can efficiently preserve the steady state solution and correctly predict the positions of propagating
disturbances.

4. The non-isothermal nozzle flow equations

The one-dimensional non-isothermal nozzle flow equations can be described by the following Euler equa-
tions with a geometric source term
otðaqÞ þ oxðaqvÞ ¼ 0; ð4:1Þ
otðaqvÞ þ oxðaqv2 þ PaÞ ¼ Poxa; ð4:2Þ
otðaEÞ þ oxðvðE þ PÞaÞ ¼ 0; ð4:3Þ
where q,v,P,E are, respectively, density, velocity, pressure, and total energy, a(x) > 0 is area of the nozzle. For
a polytropic gas, the equation of state is given by
P ¼ ðc� 1Þ E � 1

2
qv2

� �
. ð4:4Þ
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Fig. 36. Example 3.4, quasi-steady problem. The nozzle cross-sectional area.
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Fig. 37. Example 3.4, stationary quasi-steady problem. Density at initial time.
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Fig. 38. Example 3.4, stationary quasi-steady problem. Density at t = 2.5; solid line: the reference solution; ‘‘s’’: the solution of the slope
selecting method using 100 cells.
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Fig. 39. Example 3.4, stationary quasi-steady problem. Density at t = 4; solid line: the reference solution; ‘‘s’’: the solution of the slope
selecting method using 100 cells.
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Fig. 40. Example 3.4, non-stationary quasi-steady problem. Density at initial time.

X. Wen / Journal of Computational Physics 219 (2006) 322–390 367



0 2 4 6

Fig. 41. Example 3.4, non-stationary quasi-steady problem. Mach number vffiffiffiffiffiffiffiffiffiffi
kcqc�1
p at initial time.
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Fig. 42. Example 3.4, non-stationary quasi-steady problem. Density at t = 1.5; solid line: the reference solution; ‘‘s’’: the solution of the
slope selecting method using 100 cells.
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Fig. 43. Example 3.4, non-stationary quasi-steady problem. Density at t = 4.5; solid line: the reference solution; ‘‘s’’: the solution of the
slope selecting method using 100 cells.
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The cell average method for above non-isothermal nozzle flow equations takes the form
otðaqÞj þ
mjþ1

2
� mj�1

2

Dx
¼ 0; ð4:5Þ

otðaqvÞj þ
ejþ1

2
� ej�1

2

Dx
¼ P j

ajþ1
2
� aj�1

2

Dx
; ð4:6Þ

otðaEÞj þ
fjþ1

2
� fj�1

2

Dx
¼ 0; ð4:7Þ
where ajþ1
2
¼ aðxjþ1

2
Þ and mj�1

2
; mjþ1

2
; ej�1

2
; ejþ1

2
; f j�1

2
; f jþ1

2
denote, respectively, numerical fluxes for conserved

variables aq,aqv and aE at interfaces j� 1
2
; jþ 1

2
obtained by solving the homogeneous part of the non-iso-

thermal nozzle flow equations (4.1)–(4.3), namely the Euler equations.
The stationary steady state equations are given by
v ¼ 0; ð4:8Þ
P ¼ ðc� 1ÞE ¼ C. ð4:9Þ
The non-stationary steady state equations are given by
aqv ¼ C1; ð4:10Þ

av cE � c� 1

2
qv2

� �
¼ C2; ð4:11Þ

qc

E � 1
2
qv2
¼ C3. ð4:12Þ
Similar to shallow water equations and isothermal nozzle flow equations, we can define the steady state solu-
tions for non-isothermal nozzle flow equations with discontinuous cross-sectional area associated with smooth
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steady state conditions across the cross-sectional discontinuity. The definitions are given, respectively, for sta-
tionary and non-stationary case since the steady state conditions are different.

Definition 4.1. Stationary steady state solutions to non-isothermal nozzle flow equations with discontinuous
cross-sectional area: for a given initial condition to non-isothermal nozzle flow equations (4.1)–(4.3) with
discontinuous cross-sectional area, the solution will remain unchanged, i.e. the initial condition is the steady
state solution for non-isothermal nozzle flow equations with discontinuous cross-sectional area, if the initial
condition satisfies (4.8) and (4.9) anywhere including across the cross-sectional discontinuity.
Definition 4.2. Non-stationary steady state solutions to non-isothermal nozzle flow equations with discontin-
uous cross-sectional area: for a given initial condition to non-isothermal nozzle flow equations (4.1)–(4.3) with
discontinuous cross-sectional area, the solution will remain unchanged, i.e. the initial condition is the steady
state solution for non-isothermal nozzle flow equations with discontinuous cross-sectional area, if the initial
condition is non-stationary steady state solution i.e. velocity and density are non-zero in the solution on contin-
uous cross-sectional part, and across the cross-sectional discontinuity the conditions (4.10)–(4.12) hold, namely
alqlvl ¼ arqrvr; ð4:13Þ

alvl cEl �
c� 1

2
qlðvlÞ2

� �
¼ arvr cEr �

c� 1

2
qrðvrÞ2

� �
; ð4:14Þ

qc
l

El � 1
2
qlðvlÞ2

¼ qc
r

Er � 1
2
qrðvrÞ2

; ð4:15Þ
where ql,vl,El,al and qr,vr,Er,ar are the density, velocity, total energy in the initial condition and the cross-
sectional area at two sides of the cross-sectional discontinuity, and one of the following situations occurs
ðiÞ jvljffiffiffiffiffiffiffiffiffiffiffiffiffi
cP l=ql

p < 1;
jvrjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP r=qr

p < 1; ð4:16Þ

ðiiÞ jvljffiffiffiffiffiffiffiffiffiffiffiffiffi
cP l=ql

p > 1;
jvrjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP r=qr

p > 1; ð4:17Þ

ðiiiÞ
jvl jffiffiffiffiffiffiffiffiffi
cP l=ql

p ¼ 1 if al < ar;

jvrjffiffiffiffiffiffiffiffiffi
cP r=qr

p ¼ 1 if al > ar;

8><>: ð4:18Þ
where Pl,Pr are pressure in the initial condition at two sides of the cross-sectional discontinuity which are
P l ¼ ðc� 1ÞðEl � 1

2
qlv

2
l Þ; P r ¼ ðc� 1ÞðEr � 1

2
qrv

2
r Þ.
4.1. Energy gradient method (EGM)

When the cross-sectional area is continuously variable, similar to dealing with isothermal nozzle flow equa-
tions or shallow water equations, one can obtain a steady state preserving method by adding a data recon-
struction procedure into the cell average method. Since in stationary steady state, the pressure as well as
the total energy are constant, so we can use a data reconstruction procedure based on total energy as follows.

(1) In the step of defining the slopes of conserved variables aq,aqv,aE in each cell. Instead of defining the
slope of aE, define the slope (denoted by S2

k) for the total energy E
S2
k ¼ GðEk�1;Ek;Ekþ1Þ;
where G is a standard slope limiter [29]. The slopes of aq, aqv are still defined.
(2) The values of aE on the left and right of the cell interface xkþ1

2
are
ðaEÞLkþ1
2
¼ akþ1

2
Ek þ

1

2
DxS2

k

� �
; ðaEÞRkþ1

2
¼ akþ1

2
Ekþ1 �

1

2
DxS2

kþ1

� �
.
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The left and right values of aq,aqv are obtained by their cell average values and slopes. These left and
right values of conserved variables at interface xkþ1

2
are used by a homogeneous non-isothermal nozzle

flow equations solver to get the numerical fluxes mkþ1
2
; ekþ1

2
; f kþ1

2
.

(3) Once the numerical fluxes for conserved variables are obtained, one can use the cell average formula
(4.5)–(4.7) as the numerical scheme.

Since this method uses the gradient of total energy instead of that of the conserved variable aE in construct-
ing the two sides values at the interface, we name this method as the energy gradient method (EGM). Similar to
proving Z-property of SGM, one can prove that EGM can exactly preserve the stationary flow for non-
isothermal nozzle flow equations with a continuously variable cross-sectional area (Z-property) provided
the homogeneous system (Euler equations) solver used by the EGM holds the following property.

Definition 4.3. Property: a Euler equations conservative scheme exactly preserves the stationary steady state
flow. Namely, when the conserved variables values at two sides of an interface for the Euler equations are given by
qL
jþ1

2
¼ qL; ðqvÞLjþ1

2
¼ 0; EL

jþ1
2
¼ eE;

qR
jþ1

2
¼ qR; ðqvÞRjþ1

2
¼ 0; ER

jþ1
2
¼ eE;
where qL,qR may not be equal, the scheme can give the exact numerical flux at the interface ð0; ðc� 1ÞeE; 0Þ.
This is a reasonable requirement since Euler equations is got from the non-isothermal nozzle flow equations

with the cross-sectional area being a constant. So property in Definition 4.3 is the simplest case of Z-property
for non-isothermal nozzle flow equations when the cross-sectional area is a constant.

4.2. The slope selecting method

In the slope selecting method, we start from EGM and add in slope selecting strategy and interface type
source term approximation near or in the cell containing the cross-sectional discontinuity. Assume a discon-
tinuity of cross-sectional area is contained in the center of a cell ½xj�1

2
; xjþ1

2
�. Let ai be the interface values of a at

xi; i ¼ j� 1
2
; jþ 1

2
. We define the quantities at interfaces j� 1

2
; jþ 1

2

ðaqÞ�j�1
2
¼

2ðaqÞjðaqÞj�1

ðaqÞjþ1 þ ðaqÞj�1

; ðaqÞ�jþ1
2
¼

2ðaqÞjðaqÞjþ1

ðaqÞjþ1 þ ðaqÞj�1

; ð4:19Þ

ðaEÞ�j�1
2
¼

2ðaEÞjðaEÞj�1

ðaEÞjþ1 þ ðaEÞj�1

; ðaEÞ�jþ1
2
¼

2ðaEÞjðaEÞjþ1

ðaEÞjþ1 þ ðaEÞj�1

; ð4:20Þ

q�j�1
2
¼ ðaqÞ�j�1

2
=aj�1

2
; E�j�1

2
¼ ðaEÞ�j�1

2
=aj�1

2
. ð4:21Þ
We set the slopes for aq in cells j � 1, j, j + 1 as
S1
j ¼
ðaqÞ�jþ1

2
� ðaqÞ�j�1

2

Dx
; ð4:22Þ

S1
j�1 ¼

signfðaqÞj�1 � ðaqÞj�2g þ signfðaqÞ�j�1
2
� ðaqÞj�1g

2Dx
minfjðaqÞj�1 � ðaqÞj�2j; jðaqÞ�j�1

2
� ðaqÞj�1jg;

ð4:23Þ

S1
jþ1 ¼

signfðaqÞjþ2 � ðaqÞjþ1g þ signfðaqÞjþ1 � ðaqÞ�jþ1
2
g

2Dx
minfjðaqÞjþ2 � ðaqÞjþ1j; jðaqÞjþ1 � ðaqÞ�jþ1

2
jg.

ð4:24Þ
We set the slope for aE in cell j as
ðaEÞ�jþ1
2
� ðaEÞ�j�1

2

Dx
. ð4:25Þ
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We set the slopes for E in cells j � 1, j + 1 as
S2
j�1 ¼

signfEj�1 � Ej�2g þ signfE�j�1
2
� Ej�1g

2Dx
minfjEj�1 � Ej�2j; jE�j�1

2
� Ej�1jg; ð4:26Þ

S2
jþ1 ¼

signfEjþ2 � Ejþ1g þ signfEjþ1 � E�jþ1
2
g

2Dx
min jEjþ2 � Ejþ1j; jEjþ1 � E�jþ1

2
j

n o
: ð4:27Þ
The values of aE on the left and right of the cell interfaces xj�1
2

are
ðaEÞLj�1
2
¼ aj�1

2
Ej�1 þ

1

2
DxS2

j�1

� �
; ðaEÞRj�1

2
¼ ðaEÞ�j�1

2
;

ðaEÞLjþ1
2
¼ ðaEÞ�jþ1

2
; ðaEÞRjþ1

2
¼ ajþ1

2
Ejþ1 �

1

2
DxS2

jþ1

� �

with ðaEÞ�j�1

2
; S2

j�1 defined in (4.20), (4.26) and (4.27).
The left and right values of aq,aqv are still obtained by their cell average values and slopes. These left and

right values of conserved variables at interfaces xj�1
2

are used by a homogeneous non-isothermal nozzle flow
equations conservative scheme to get the numerical fluxes mj�1

2
; ej�1

2
; f j�1

2
.

From the above obtained quantities, define
v�j�1
2
¼

mj�1
2

ðaqÞ�j�1
2

; P �j�1
2
¼ ðc� 1Þ E�j�1

2
� 1

2
q�j�1

2
ðv�j�1

2
Þ2

� �
. ð4:28Þ
If v�
j�1

2
¼ v�

jþ1
2
¼ 0, this is the stationary case. We use the following expression
P �j�1
2
þ P �jþ1

2

2

ajþ1
2
� aj�1

2

Dx
ð4:29Þ
to replace the source term approximation in cell average method (4.6). This is the interface scheme introduced
in [21].

In other non-stationary cases, as in [23], denote Hi ¼ aiq�i v�i , Gi ¼ aiv�i ðcE�i �
c�1

2
q�i ðv�i Þ

2Þ, F i ¼
ðq�i Þ

c

E�i �
1
2q
�
i ðv
�
i Þ

2; i ¼ j� 1
2
. We choose â,H,G, F to be linear functions on ½xj�1

2
; xjþ1

2
� with
âðxiÞ ¼ ai; HðxiÞ ¼ H i; GðxiÞ ¼ Gi; F ðxiÞ ¼ F i; i ¼ j� 1

2
. ð4:30Þ
We choose smooth q̂; v̂; bE on ½xj�1
2
; xjþ1

2
� satisfying
âq̂v̂ ¼ H ; ð4:31Þ

âv̂ cbE � c� 1

2
q̂v̂2

� �
¼ G; ð4:32Þ

q̂cbE � 1
2
q̂v̂2
¼ F ð4:33Þ
with endpoint values
q̂ðxiÞ ¼ q�i ; v̂ðxiÞ ¼ v�i ; bEðxiÞ ¼ E�i ; i ¼ j� 1

2
. ð4:34Þ
Define bP by
bP ¼ ðc� 1Þ bE � 1

2
q̂v̂2

� �
. ð4:35Þ
We then use the following expression
1

Dx

Z x
jþ1

2

x
j�1

2

bP dx

0@ 1A ajþ1
2
� aj�1

2

Dx
ð4:36Þ



X. Wen / Journal of Computational Physics 219 (2006) 322–390 373
to replace the source term approximation in cell average method (4.6) to define our scheme. The numerical
integration strategy is similar as mentioned for shallow water equations and isothermal nozzle flow equations.

The values of q̂; v̂; bE are chosen from (4.31)–(4.33) according to the sub- or super-sonic states of the solu-
tion. When the flow is transonic over the cross-sectional discontinuity, we should do the fix operation to help
choosing these values from (4.31)–(4.33). This is essentially the same as the isothermal nozzle flow equations.

We use the scheme of EGM in all the other cells do not containing a cross-sectional discontinuity with the
mention that the slopes of energy and aq in the cell adjacent to a cross-sectional discontinuity is modified by
our slope selecting strategy.

Similar to the conclusions for the shallow water equations and isothermal nozzle flow equations, one can prove
that our slope selecting method for non-isothermal nozzle flow equations preserves exactly the stationary steady
state solutions belonging to Definition 4.1 provided the homogeneous system solver satisfies Definition 4.3, and
formally exactly preserves the non-stationary steady state solutions belonging to Definition 4.2 in which no sta-
tionary shock exists when cross-sectional area is a step function (S-property). The proof is given in Appendix D.

4.3. Numerical examples

We now give two numerical examples. The first example illustrates that our method works well for calcu-
lating both unsteady and steady state solution for the non-isothermal nozzle flow equations. The second exam-
ple is a quasi-steady problem.

Example 4.1. Steady and unsteady state calculation.

This is a problem modified from [11] and has been tested by our method in [23]. The steady state solution
for this problem contains a transonic shock. Consider a discontinuous nozzle
aðxÞ ¼
1:05; 0 6 x 6 2;

1:4452þ 0:3 tanhð0:8x� 4Þ; 2 < x 6 10

�

shown in Fig. 44. The computational domain is 0 6 x 6 10. The left boundary conditions are
(ql,vl,El) = (0.502,1.299,1.378), the right boundary conditions are qr = 0.776. We choose the initial values
0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

Fig. 44. Example 4.1, steady and unsteady calculation. A nozzle with discontinuous cross-sectional area.
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Fig. 45. Example 4.1, steady and unsteady calculation. Density at t = 0.5; solid line: the reference solution; ‘‘s’’: the solution of Roe
solver using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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Fig. 46. Example 4.1, steady and unsteady calculation. Solutions of qc

P at t = 0.5; solid line: the reference solution; ‘‘s’’: the solution of Roe
solver using 100 cells; ‘‘·’’: the solution of relaxation scheme using 100 cells.
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as a(q,qv,E) = (0.528,0.686,1.447) when x < 5 and a(q,qv,E) = (1.354, 0.686, 3.454) when x > 5. We take
Dt
Dx ¼ 1=4, use the Roe solver and relaxation scheme for the convection and the second order TVD Runge–Kutta
time discretization [35]. The constant bC in subcharacteristic condition in relaxation scheme is chosen to be 10.
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Fig. 47. Example 4.1, steady and unsteady calculation. Solutions of qc

P at t = 0.5 from relaxation cell average method using 1000 cells.
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Fig. 48. Example 4.1, steady and unsteady calculation. Density in steady state; ‘‘s’’: solution of Roe solver using 100 cells; ‘‘·’’: solution
of relaxation scheme using 100 cells.
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The density and the quantity qc

P at t = 0.5 from our slope selecting method based on Roe solver and relax-
ation scheme using 100 cells and that based on relaxation scheme using 4000 cells, which are used to be the
reference solution, are plotted in Figs. 45 and 46, respectively. The reference solution matches with that given
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Fig. 49. Example 4.1, steady and unsteady calculation. Solutions of qc

P at steady state; ‘‘s’’: solution of Roe solver using 100 cells; ‘‘·’’:
solution of relaxation scheme using 100 cells.
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by our method in [23]. The solution already reaches steady state across the cross-sectional discontinuity with qc

P
being the same constant at two sides at t = 0.5. We also plot the quantity qc

P at t = 0.5 from relaxation cell aver-

age method using 1000 cells in Fig. 47. The result in Fig. 47 do not reaches the same constant at two sides of
cross-sectional discontinuity and this gap do not decrease when more space points are used. Thus the relax-
ation cell average method cannot capture the energy conservation solution across the cross-sectional discon-
tinuity. This exhibit the conventional cell average method fails in steady state capturing for this example.

Figs. 48 and 49 plot, respectively, the density and the quantity qc

P in the steady state solution from our
method based on Roe solver and relaxation scheme using 100 cells. These results match with that of our
method in [23]. It can be seen that the steady state expression qc

P reach the same constant at two sides of
the cross-sectional discontinuity and a transonic shock stands in the steady state solution.

Example 4.2. A quasi-steady calculation.

We calculate in this example the disturbance propagation in a stationary steady state solution of non-
isothermal nozzle flow equations using our slope selecting method. We use the zeroth order extrapolation
as numerical boundary condition. We use Roe scheme to solve the homogeneous part of non-isothermal noz-
zle flow equations, namely Euler equations and obtain the reference solution by our method using 1000 grid
points. The cross-sectional area is chosen to be
aðxÞ ¼
1; x < �2

0:6þ 0:1 cos px
8
þ 1

� �
; �2 < x < 2;

1; x > 2

8><>:

on �5 < x < 5, as shown in Fig. 50.

We choose the steady state solution q0,v0,E0 on [�5,5] to be q0 = 1,v0 = 0,E0 = 3, choose initial density
value, velocity value and total energy value as
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Fig. 50. Example 4.2, quasi-steady calculation. Nozzle cross-sectional area.
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Fig. 52. Example 4.2, quasi-steady calculation. Pressure at t= 1; solid line: the reference solution; ‘‘s’’: solution of the slope selecting
method using 200 cells.
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Fig. 53 Example 4.2, quasi-steady calculation. Pressure at t = 1.8; solid line: the reference solution; ‘‘s’’: solution of the slope selecting
method using 200 cells 
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Fig. 54. Example 4.2, quasi-steady calculation. Pressure at t = 2.5; solid line: the reference solution; ‘‘s’’: solution of the slope selecting
method using 200 cells.
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Fig. 55. Example 4.2, quasi-steady calculation. Density at t = 2.5; solid line: the reference solution; ‘‘s’’: solution of the slope selecting
method using 200 cells.
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Eðx; 0Þ ¼ E0 þ 10�2; � 1
2
6 x 6 1

2
;

E0; else

(

and q(x, 0) = q0,v(x, 0) = v0. We use 200 cells and take Dt

Dx ¼ 1=2. The initial pressure is plotted in Fig. 51. Figs.
52–55 show, respectively, solutions of pressure at t = 1, 1.8, 2.5 and density at t = 2.5. The initial disturbance
in the pressure splits into two and propagate in different direction, as shown in Fig. 52. When the initially split
disturbances encounter the cross-sectional discontinuities, each further splits into two disturbances, as shown
in Fig. 53. Among these disturbances, two smaller ones move back to the central part of the domain, another
two larger ones continue moving outwards, as shown in Fig. 54. Fig. 55 shows the density at the same time. In
these results, compared with reference solutions, the solutions by our slope selecting scheme using 200 cells
can efficiently preserve the steady state solution and correctly predict the positions of propagating
disturbances.
5. Conclusions

A simple well-balanced method named the slope selecting method is proposed for hyperbolic system with
geometrical source terms having concentrations. We use two physical problems, the shallow water equations
with discontinuous topography, and the quasi-one-dimensional nozzle flows with discontinuous cross-
sectional area, to illustrate our method. This method is extended from the interface type method developed
in [23]. Two improvements of the this method from the previous method are that this method is efficient in
steady state preserving and can be designed based on any conservative scheme for the homogeneous hyper-
bolic system. Furthermore, the efficiency in steady state capturing of the previous method is inherited in this
method. Similar to the previous method, this slope selecting method solves well the sub- or super-critical flows,
and with a transonic fix, also handles well the transonic flows over the concentration. In summary, the slope
selecting method is efficient in both steady state capturing and preserving, and can be easily applied to different
hyperbolic system with geometrical source terms having concentrations with the knowledge of any conserva-
tive scheme for the homogeneous system.

The design principle of the slope selecting method is to start from a scheme which is efficient in steady state
preserving when the source terms for the hyperbolic system do not have concentration, and then incorporate
into this scheme a slope selecting strategy and the interface type source term approximation developed in [23]
near or in the cell containing the source term concentration. For shallow water equations, we choose the sur-
face gradient method (SGM) [40] as the basis of our method which is efficient in steady state preserving when
the bottom is continuously variable. For nozzle flow equations, in the same principle of SGM, we design the
density gradient method (DGM) for isothermal nozzle flow equations and the energy gradient method (EGM)
for non-isothermal nozzle flow equations which are efficient steady state preserving schemes when the cross-
sectional area is continuously variable. We base on DGM or EGM to design the slope selecting method for
nozzle flow equations with discontinuous cross-sectional area.

Extensive numerical experiments demonstrate that the slope selecting method, being widely applicable to
conservative schemes for the homogeneous hyperbolic system, is generally effective in steady, unsteady and
quasi-steady state solutions calculation of the considered hyperbolic systems with geometrical source terms
having concentrations.
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Appendix A

This appendix gives the numerical fluxes expressions of the HLLE and the relaxation scheme for 1D homo-
geneous shallow water equations and homogeneous isothermal nozzle flow equations. These numerical fluxes
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at an interface are calculated from the values of conserved variables on the left and right sides of the interface.
These two sides values of conserved variables are the cell average values in the first order method and are
obtained from the cell average values with slope limiter adjustment in the second order method.

The HLLE scheme uses the approximate Riemann solver proposed by Einfeldt [9] on the basis of the HLL
solver [18] by Harten, Lax and Van Leer. For 1D homogeneous shallow water Riemann problem, the approx-
imate solution consists three states, the two initial states connected by an intermediate states, which is deter-
mined by the conservative property of the system. The speeds of the two discontinuities separating the three
states in the solution are appropriately chosen to ensure the positivity preservation and entropy inequality of
the solver.

Assume the two sides values of conserved variables h,m are provided at an interface for 1D shallow water
equations denoted as hL

jþ1
2
; mL

jþ1
2
; hR

jþ1
2
; mR

jþ1
2
, and the numerical fluxes for the conserved variables to be calcu-

lated are denoted as mjþ1
2
; ejþ1

2
, in consistence with the notations used in Section 2.3. Then these numerical

fluxes are calculated as follows in HLLE scheme.
Define
F L
jþ1

2
¼

mL
jþ1

2

mL

jþ1
2

� �2

hL

jþ1
2

þ 1
2
g hL

jþ1
2

� �2

0BBBB@
1CCCCA; F R

jþ1
2
¼

mR
jþ1

2

mR

jþ1
2

� �2

hR

jþ1
2

þ 1
2
g hR

jþ1
2

� �2

0BBBB@
1CCCCA. ðA:1Þ
The next involves defining the averaged water height and velocity. The choice for such values are not unique.
For simplicity, in our computation we use the following averaged values
�h ¼
hL

jþ1
2
þ hR

jþ1
2

2
; �v ¼

mL
jþ1

2
þ mR

jþ1
2

hL
jþ1

2
þ hR

jþ1
2

.

Define
c� ¼ �v�
ffiffiffiffiffi
g�h

q
; cþ ¼ �vþ

ffiffiffiffiffi
g�h

q
;

bl ¼ min
mL

jþ1
2

hL
jþ1

2

�
ffiffiffiffiffiffiffiffiffiffi
ghL

jþ1
2

q
; c�

 !
;

br ¼ max
mR

jþ1
2

hR
jþ1

2

þ
ffiffiffiffiffiffiffiffiffiffi
ghR

jþ1
2

q
; cþ

 !
;

bþ ¼ maxðbr; 0Þ; b� ¼ minðbl; 0Þ.
Then the numerical fluxes mjþ1
2
; ejþ1

2
are given by
mjþ1
2

ejþ1
2

 !
¼ bþ

bþ � b�
F L

jþ1
2
� b�

bþ � b�
F R

jþ1
2
þ bþb�

bþ � b�
hR

jþ1
2
� hL

jþ1
2

mR
jþ1

2
� mL

jþ1
2

0@ 1A. ðA:2Þ
Similarly, for isothermal nozzle flow equations, denote the values of conserved variables at two sides of an
interface to be ðaqÞLjþ1

2
; ðaqvÞLjþ1

2
; ðaqÞRjþ1

2
; ðaqvÞRjþ1

2
. The numerical fluxes at the interface, denoted by

mjþ1
2
; ejþ1

2
, are calculated as follows in the HLLE scheme.

Since the cross-sectional discontinuities are set at the center of cells, the cross-sectional area is continuous at
the interface. Denote the value of cross-sectional area at the interface to be ajþ1

2
. Denote k̂ ¼ kðajþ1

2
Þ1�c. Define
F L
jþ1

2
¼

ðaqvÞLjþ1
2

ðaqvÞL
jþ1

2

� �2

ðaqÞL
jþ1

2

þ k̂ ðaqÞLjþ1
2

� �c

0BBB@
1CCCA; F R

jþ1
2
¼

ðaqvÞRjþ1
2

ðaqvÞR
jþ1

2

� �2

ðaqÞR
jþ1

2

þ k̂ ðaqÞRjþ1
2

� �c

0BBB@
1CCCA. ðA:3Þ
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Define the averaged aq and v
aq ¼
ðaqÞLjþ1

2
þ ðaqÞRjþ1

2

2
; �v ¼

ðaqvÞLjþ1
2
þ ðaqvÞRjþ1

2

ðaqÞLjþ1
2
þ ðaqÞRjþ1

2

.

Define
c� ¼ �v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂cðaqÞc�1

q
; cþ ¼ �vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂cðaqÞc�1

q
;

bl ¼ min
ðaqvÞLjþ1

2

ðaqÞLjþ1
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂c ðaqÞLjþ1

2

� �c�1
r

; c�
 !

;

br ¼ max
ðaqvÞRjþ1

2

ðaqÞRjþ1
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂c ðaqÞRjþ1

2

� �c�1
r

; cþ
 !

;

bþ ¼ maxðbr; 0Þ; b� ¼ minðbl; 0Þ.
Then the numerical fluxes mjþ1
2
; ejþ1

2
are given by
mjþ1
2

ejþ1
2

 !
¼ bþ

bþ � b�
F L

jþ1
2
� b�

bþ � b�
F R

jþ1
2
þ bþb�

bþ � b�
ðaqÞRjþ1

2
� ðaqÞLjþ1

2

ðaqvÞRjþ1
2
� ðaqvÞLjþ1

2

0@ 1A. ðA:4Þ
It can be seen that if one obtains the numerical fluxes for the isentropic equations, which is the homogeneous
isothermal nozzle flow equations with cross-sectional area a dropping, with left and right hand sides conserved

variables values to be
ðaqÞL

jþ1
2

a
jþ1

2

;
ðaqvÞL

jþ1
2

a
jþ1

2

;
ðaqÞR

jþ1
2

a
jþ1

2

;
ðaqvÞR

jþ1
2

a
jþ1

2

by the HLLE scheme, and then multiplies those numerical

fluxes by ajþ1
2
, the results are the same as (A.4).

The relaxation scheme proposed by Jin and Xin [25] obtains the numerical fluxes for a nonlinear hyperbolic
conservation system from a linear hyperbolic system with double variable number. Consider a 1D two equa-
tions nonlinear conservation system
u1

u2

� �
t

þ
f1ðu1; u2Þ
f2ðu1; u2Þ

� �
x

¼ 0.
Assume at an interface the two sides values of conserved variables are given as uL
1 ; uL

2 ; uR
1 ; uR

2 . Denote the
numerical fluxes at the interface to be calculated as f̂ 1; f̂ 2. Then in relaxation scheme these numerical fluxes
are obtained by introducing a four variables linear Riemann problem
U 1

U 2

U 3

U 4

0BBB@
1CCCA

t

þ

0 0 1 0

0 0 0 1bC 0 0 0

0 bC 0 0

0BBB@
1CCCA

U 1

U 2

U 3

U 4

0BBB@
1CCCA

x

¼ 0
with initial data
U 1

U 2

U 3

U 4

0BBB@
1CCCA

t¼0

¼
UL x < 0;

UR x > 0;

�



X. Wen / Journal of Computational Physics 219 (2006) 322–390 383
where
UL ¼

UL1

UL2

UL3

UL4

0BBB@
1CCCA ¼

uL
1

uL
2

f1ðuL
1 ; u

L
2 Þ

f2ðuL
1 ; u

L
2 Þ

0BBB@
1CCCA; UR ¼

UR1

UR2

UR3

UR4

0BBB@
1CCCA ¼

uR
1

uR
2

f1ðuR
1 ; u

R
2 Þ

f2ðuR
1 ; u

R
2 Þ

0BBB@
1CCCA.
The constant bC in the linear system is positive and satisfies subcharacteristic condition which requires
ffiffiffiffibCp

to
be greater than the absolute value of the characteristic speeds in the solution of the nonlinear system. This
condition means that the characteristic speeds for the linear system are greater than those for original nonlin-
ear equations.

The numerical fluxes f̂ 1; f̂ 2 are set to be values of U3,U4 at x = 0 in the linear Riemann problem. These
values can be calculated to be given as
f̂ 1

f̂ 2

 !
¼

UL3þUR3

2
þ

ffiffiffibCp
2
ðUL1 � UR1Þ

UL4þUR4

2
þ

ffiffiffibCp
2
ðUL2 � UR2Þ

0B@
1CA. ðA:5Þ
For 1D shallow water equations, denote the conserved variables values at two sides of an interface to be

hL
jþ1

2
; mL

jþ1
2
; hR

jþ1
2
; mR

jþ1
2
, and define the corresponding fluxes F L

jþ1
2
; F R

jþ1
2

as in (A.1). Then from (A.5) the numer-

ical fluxes given by the relaxation scheme are written as
mjþ1
2

ejþ1
2

 !
¼

F L
jþ1

2
þ F R

jþ1
2

2
þ

ffiffiffiffibCp
2

hL
jþ1

2
� hR

jþ1
2

mL
jþ1

2
� mR

jþ1
2

0@ 1A. ðA:6Þ
For homogeneous isothermal nozzle flow equations, denote the conserved variables values at two sides of an

interface to be ðaqÞLjþ1
2
; ðaqvÞLjþ1

2
; ðaqÞRjþ1

2
; ðaqvÞRjþ1

2
, and define the corresponding fluxes F L

jþ1
2
; F R

jþ1
2

as in (A.3).

Then from (A.5) the numerical fluxes given by the relaxation scheme are written as
mjþ1
2

ejþ1
2

 !
¼

F L
jþ1

2
þ F R

jþ1
2

2
þ

ffiffiffiffibCp
2

ðaqÞLjþ1
2
� ðaqÞRjþ1

2

ðaqvÞLjþ1
2
� ðaqvÞRjþ1

2

0@ 1A. ðA:7Þ
Appendix B

This appendix gives the exact solutions with 6 effective number for Examples 2.1, 2.2, 3.1, and 3.2. Exam-
ples 2.1 and 2.2 are Riemann problems for shallow water equations with bottom step. The method for con-
structing the exact solutions is provided in [1].

Example 2.1
hðx; tÞ ¼

4; x
t < n1;

� 1
3
ffiffi
g
p x

t � n1

� �
þ 2

� �2

; n1 <
x
t < n2;

1:566049; n2 <
x
t < s

0:774464; s < x
t < 0;

1; x
t > 0;

8>>>>>>><>>>>>>>:
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mðx; tÞ ¼

�40; x
t < n1;

2
3

x
t � n1

� �
� 10

� �
hðx; tÞ; n1 <

x
t < n2;

�8:320635; n2 <
x
t < s;

�6; x
t > s;

8>>><>>>:

with n1 = �16.260990, n2 = �9.230700, s = �2.931634.

Example 2.2
hðx; tÞ ¼

4; x
t < n1;

� 1
3
ffiffi
g
p x

t � n1

� �
þ 2

� �2

; n1 <
x
t < n2;

1:009629; n2 <
x
t < s;

0:429476; s < x
t < 0;

1
3
ffiffi
g
p x

t þ 0:942809
� �2

; 0 < x
t < n3;

2; x
t > n3;

8>>>>>>>>>>><>>>>>>>>>>>:

mðx; tÞ ¼

�40; x < 0:5n1;
2
3

x
t � n1

� �
� 10

� �
hðx; tÞ; n1 <

x
t < n2;

�3:805371; n2 <
x
t < s;

�2:623519; s < x
t < 0;

2
3

x
t � 2:951459

� �
hðx; tÞ; 0 < x

t < n3;

0; x
t > n3;

8>>>>>>>><>>>>>>>>:

with n1 = �16.260990, n2 = �6.914610, n3 = 4.427189, s = �2.037139.

Examples 3.1 and 3.2 are Riemann problems for isothermal nozzle flow equations with cross-sectional area
step. The method for constructing the exact solutions is provided in [28].

Example 3.1
qðx; tÞ ¼

4; x
t < n1;

� c�1
cþ1

1ffiffiffi
kc
p x

t � n1

� �
þ 2c�1

� � 2
c�1

; n1 <
x
t < 0;

0:144489; 0 < x
t < s;

0:334984; s < x
t < n2;

c�1
cþ1

1ffiffiffi
kc
p x

t � n2

� �
þ ð0:334984Þ

c�1
2

� � 2
c�1

; n2 <
x
t < n3;

1; x
t > n3;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

mðx; tÞ ¼

�7:2; x
t < n1;

2
cþ1

x
t � n1

� �
� 1:8

� �
qðx; tÞ; n1 <

x
t < 0;

0:235688; 0 < x
t < s;

0:283244; s < x
t < n2;

2
cþ1

x
t � n2

� �
þ 0:845545

� �
qðx; tÞ; n2 <

x
t < n3;

2; x
t > n3;

8>>>>>>>>>>><>>>>>>>>>>>:

with n1 = �3.254832, n2 = 1.807837, n3 = 3.154701, s = 0.249642.
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Example 3.2
qðx; tÞ ¼

4; x
t < n1;

� c�1
cþ1

1ffiffiffi
kc
p x

t � n1

� �
þ 2c�1

� � 2
c�1

; n1 <
x
t < n2;

2:081147; n2 <
x
t < 0;

2:299140; 0 < x
t < n3;

c�1
cþ1

1ffiffiffi
kc
p x

t � n3

� �
þ ð2:299140Þ

c�1
2

� � 2
c�1

; n3 <
x
t < n4;

6; x
t > n4;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

mðx; tÞ ¼

�6:4; x
t < n1;

2
cþ1

x
t � n1

� �
� 1:6

� �
qðx; tÞ; n1 <

x
t < n2;

�1:455504; n2 <
x
t < 0;

�0:873302; 0 < x
t < n3;

2
cþ1

x
t � n3

� �
� 0:379839

� �
qðx; tÞ; n3 <

x
t < n4;

6; x
t > n4;

8>>>>>>>>>><>>>>>>>>>>:

with n1 = �3.054832, n2 = �2.004104, n3 = 0.946732, n4 = 2.556543.

Appendix C

In this appendix, we prove the S-property of our slope selecting method described in Section 3.2 for iso-
thermal nozzle flow equations with discontinuous cross-sectional area. Namely, the following theorem holds
for our slope selecting method.

Theorem C.1. When the cross-sectional area is a step function, if the interface type source term approximation in

the slope selecting method can be exactly computed, the slope selecting scheme described in Section 3.2 can
preserve exactly any steady state solution belonging to Definition 3.1 in which the steady state conditions (3.5),

(3.6) are hold anywhere including across the cross-sectional discontinuity.

Proof. Assume the cross-sectional area is a step function with left and right side values al and ar. We only need
to prove our slope selecting scheme preserve the steady state solution exactly in the cell ½xj�1

2
; xjþ1

2
� which con-

tains the cross-sectional discontinuity in the center. The density and velocity in the steady state solution are
step functions. Denote their left and right values to be ql,vl and qr,vr, which satisfy
alqlvl ¼ arqrvr; ðC:1Þ
1

2
v2

l þ k
c

c� 1
ðqlÞ

c�1 ¼ 1

2
v2

r þ k
c

c� 1
ðqrÞ

c�1. ðC:2Þ
It can be similarly checked as for shallow water equations that the numerical fluxes in our slope selecting
method at interfaces j� 1

2
preserve the exact values due to the slope selecting strategy implemented in the

method.
mj�1
2
¼ alqlvl; ej�1

2
¼ alqlðvlÞ2 þ kalðqlÞ

c
;

mjþ1
2
¼ arqrvr; ejþ1

2
¼ arqrðvrÞ2 þ karðqrÞ

c
;

and the interface values of q,v defined for interface type source term approximation (3.13), (3.17) are
q�j�1
2
¼ ql; q�jþ1

2
¼ qr; v�j�1

2
¼ vl; v�jþ1

2
¼ vr. ðC:3Þ
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Our slope selecting scheme for isothermal nozzle flow equations in the cell ½xj�1
2
; xjþ1

2
� thus can be written

as
otðaqÞj þ
arqrvr � alqlvl

Dx
¼ 0; ðC:4Þ

otðaqvÞj þ
arqrv

2
r þ karðqrÞ

c� �
� alqlv

2
l þ kalðqlÞ

c� �
Dx

¼ k
Dx

Z x
jþ1

2

x
j�1

2

ðq̂Þcâx dx; ðC:5Þ
where q̂; â are smooth functions on ½xj�1
2
; xjþ1

2
� defined in Section 3.2.

The flux difference for aq in scheme (C.4) is zero due to (C.1). Recall v̂ defined in Section 3.2. For steady
state solutions satisfying one of conditions (3.9)–(3.11) described in Definition 3.1, the transonic fix in our
source term approximation does not apply. So the endpoint values for functions q̂; v̂ are given by (3.22),
which are given by (C.3). Recall the identities (3.19), (3.20), the flux difference for aqv in scheme (C.5) can be
calculated as
ðarqrv
2
r þ karðqrÞ

cÞ � ðalqlv
2
l þ kalðqlÞ

cÞ
Dx

� k
Dx

Z x
jþ1

2

x
j�1

2

ðq̂Þcâx dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½ðâq̂ðv̂Þ2Þx þ ðkâðq̂ÞcÞx � kðq̂Þcâx� dx ¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½ðâq̂v̂Þxv̂þ ðâq̂v̂Þv̂x þ kâcðq̂Þc�1q̂x� dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½Hxv̂þ âq̂ðv̂v̂x þ kcðq̂Þc�2q̂xÞ� dx ¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½H xv̂þ âq̂Gx� dx. ðC:6Þ
Finally, recall the definitions of H,G (3.18) and the facts (C.1), (C.2), one knows H,G indeed are constants in
the cell [xj�1/2,xj+1/2]. So the function in the integration (C.6) is identically zero and the flux difference for aqv
in scheme (C.5) is zero. Thus this steady state solution is exactly preserved by our slope selecting scheme de-
scribed in Section 3.2. h
Appendix D

In this appendix, we prove the S-property of our slope selecting method described in Section 4.2 for non-
isothermal nozzle flow equations with discontinuous cross-sectional area. Namely, the following theorem
holds for our slope selecting method.

Theorem D.1. When the cross-sectional area is a step function, the slope selecting scheme described in Section

4.2 can preserve exactly any stationary steady state solution belonging to Definition 4.1 if the Euler equations

solver used by the slope selecting method has the property in Definition 4.3, and can preserve exactly any non-

stationary steady state solution belonging to Definition 4.2 in which the steady state conditions 4.10, 4.11, 4.12
are hold anywhere including across the cross-sectional discontinuity if the interface type source term

approximation in the slope selecting method can be exactly computed.

Proof. Assume the cross-sectional area is a step function with left and right side values al and ar. We only need
to prove our slope selecting scheme preserve the steady state solution exactly in the cell ½xj�1

2
; xjþ1

2
� which con-

tains the cross-sectional discontinuity in the center. We discuss the stationary and non-stationary steady state
solution, respectively.

For stationary steady state solution case, the velocity, total energy are constants on the entire domain.
Denote them by ~v ¼ 0 and eE. It can be checked that the conserved variables values at two sides of interface
jþ 1

2 in our slope selecting method take the following form due to the slope selecting strategy implemented in
the method.
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ðaqÞLjþ1
2
¼ ðaqÞL; ðaqvÞLjþ1

2
¼ 0; ðaEÞLjþ1

2
¼ ar

eE;
ðaqÞRjþ1

2
¼ ðaqÞR; ðaqvÞRjþ1

2
¼ 0; ðaEÞRjþ1

2
¼ ar

eE;

where (aq)L, (aq)R are certain values which may not be equal.

Since the Euler equations solver used by the slope selecting method has the property in Definition 4.3, the
numerical fluxes at interface jþ 1

2 in the slope selecting method are given by
mjþ1
2
¼ 0; ejþ1

2
¼ ðc� 1ÞeEar; f jþ1

2
¼ 0.
In the same way, the numerical fluxes at interface j� 1
2

are given by
mj�1
2
¼ 0; ej�1

2
¼ ðc� 1ÞeEal; f j�1

2
¼ 0.
Also notice the quantities E�j�1
2

in (4.21), v�
j�1

2
and P �j�1

2
in (4.28) can be checked to be
E�j�1
2
¼ eE; v�j�1

2
¼ 0; P �j�1

2
¼ ðc� 1ÞeE.
Thus in this stationary steady state solution case, our slope selecting scheme for non-isothermal nozzle flow
equations in the cell ½xj�1

2
; xjþ1

2
� can be written as
otðaqÞj þ
0� 0

Dx
¼ 0; ðD:1Þ

otðaqvÞj þ
ðc� 1ÞeEar � ðc� 1ÞeEal

Dx
¼

P �j�1
2
þ P �jþ1

2

2

ar � al

Dx
; ðD:2Þ

otðaEÞj þ
0� 0

Dx
¼ 0. ðD:3Þ
The flux difference in (D.2) is also zero since P �j�1
2
¼ ðc� 1ÞeE. Thus this stationary steady state solution is ex-

actly preserved by our slope selecting scheme described in Section 4.2.
For non-stationary steady state solution case, the density, velocity and total energy in the steady state

solution are step functions. Denote their left and right values to be ql,vl,El and qr,vr,Er. The two sides
pressures are
P l ¼ ðc� 1Þ El �
1

2
qlðvlÞ2

� �
; P r ¼ ðc� 1Þ Er �

1

2
qrðvrÞ2

� �
.

It holds that vl 6¼ 0, vr 6¼ 0, ql 6¼ 0, qr 6¼ 0, and
alqlvl ¼ arqrvr; ðD:4Þ

alvl cEl �
c� 1

2
qlðvlÞ2

� �
¼ arvr cEr �

c� 1

2
qrðvrÞ2

� �
; ðD:5Þ

qc
l

El � 1
2
qlðvlÞ2

¼ qc
r

Er � 1
2
qrðvrÞ2

. ðD:6Þ
It can be checked that the numerical fluxes in our slope selecting method at interfaces j� 1
2

preserve the exact
values due to the slope selecting strategy implemented in the method.
mj�1
2
¼ alqlvl; ej�1

2
¼ alqlðvlÞ2 þ P lal; f j�1

2
¼ vlðEl þ P lÞal;

mjþ1
2
¼ arqrvr; ejþ1

2
¼ arqrðvrÞ2 þ P rar; f jþ1

2
¼ vrðEr þ P rÞar;
and the interface values of q,v,E,P defined for interface type source term approximation (4.21), (4.28) are
q�j�1
2
¼ ql; q�jþ1

2
¼ qr; v�j�1

2
¼ vl; v�jþ1

2
¼ vr; ðD:7Þ

E�j�1
2
¼ El; E�jþ1

2
¼ Er; P �j�1

2
¼ P l; P �jþ1

2
¼ P r. ðD:8Þ
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Thus in this non-stationary steady state solution case, our slope selecting scheme for non-isothermal nozzle
flow equations in the cell ½xj�1

2
; xjþ1

2
� can be written as
otðaqÞj þ
arqrvr � alqlvl

Dx
¼ 0; ðD:9Þ

otðaqvÞj þ
ðarqrv

2
r þ P rarÞ � ðalqlv

2
l þ P lalÞ

Dx
¼ 1

Dx

Z x
jþ1

2

x
j�1

2

bP âx dx; ðD:10Þ

otðaEÞj þ
vrðEr þ P rÞar � vlðEl þ P lÞal

Dx
¼ 0; ðD:11Þ
where bP ; â are smooth functions on ½xj�1
2
; xjþ1

2
� defined in Section 4.2.

The flux differences for aq and aE in schemes (D.9), (D.11) are zero due to (D.4), (D.6). Recall q̂; v̂; bE
defined in Section 4.2. For steady state solutions satisfying one of conditions (4.16)–(4.18) described in
Definition 4.2, the transonic fix in our source term approximation does not apply. So the endpoint values for
functions q̂; v̂; bE are given by (4.34), which are given by (D.7), (D.8). According to (4.35), the endpoint values
of bP are P �j�1

2
in (4.28), which are given by (D.8). Recall the identities (4.31), (4.32) and (4.33), the flux

difference for aqv in scheme (D.10) can be calculated as
ðarqrv
2
r þ P rarÞ � ðalqlv

2
l þ P lalÞ

Dx
� 1

Dx

Z x
jþ1

2

x
j�1

2

bP âx dx ¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½ðâq̂ðv̂Þ2Þx þ ðbP âÞx � bP âx� dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½ðâq̂v̂Þxv̂þ ðâq̂v̂Þv̂x þ bP xâ� dx ¼ 1

Dx

Z x
jþ1

2

x
j�1

2

H xv̂þ âq̂ v̂v̂x þ
bP x

q̂

 !" #
dx

¼ 1

Dx

Z x
jþ1

2

x
j�1

2

½Hxv̂þ âq̂ðT 1 þ T 2Þ� dx; ðD:12Þ
where T1, T2 are defined as
T 1 ¼ v̂v̂x þ
c

c� 1

bP
q̂

 !
x

; T 2 ¼
bP x

q̂
� c

c� 1

bP
q̂

 !
x

.

T1 can be evaluated as
T 1 ¼ v̂v̂x þ
c

c� 1

bP
q̂

 !
x

¼ 1

2
ðv̂Þ2 þ c

c� 1

bP
q̂

 !
x

¼
1
2
q̂ðv̂Þ2 þ cðbE � 1

2
q̂ðv̂Þ2Þ

q̂

 !
x

¼ G
H

� �
x

. ðD:13Þ
T2 can be evaluated as
T 2 ¼
bP x

q̂
� c

c� 1

bP
q̂

 !
x

¼ �1

c� 1

bP x

q̂
þ c

c� 1

bP
ðq̂Þ2

q̂x ¼
1

c� 1

ðbP Þ2
ðq̂Þcþ1

�
bP xðq̂Þc

ðbP Þ2 þ c
ðq̂Þc�1q̂xbP

 !

¼ 1

c� 1

ðbP Þ2
ðq̂Þcþ1

ðq̂ÞcbP
� �

x

¼ 1

ðc� 1Þ2
ðbP Þ2
ðq̂Þcþ1

F x. ðD:14Þ
Together with (D.12), (D.13) and (D.14), the flux difference for aqv in scheme (D.10) is calculated to be
1

Dx

Z x
jþ1

2

x
j�1

2

H xv̂þ âq̂
G
H

� �
x

þ 1

ðc� 1Þ2
ðbP Þ2
ðq̂Þcþ1

F x

 !" #
dx. ðD:15Þ
Finally, recall the definitions of H,G,F (4.30) and the facts (D.4), (D.5) and (D.6), one knows H,G,F indeed
are constants in the cell [xj�1/2,xj+1/2]. So the function in the integration (D.15) is identically zero and the flux
difference for aqv in scheme (D.10) is zero. Thus this non-stationary steady state solution is exactly preserved
by our slope selecting scheme described in Section 4.2. h
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